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Abstract

Here we present the numerical method used for generating Liljencrants-Fant glottal flow implemented in Acwato
software (available at acwato.com)). The computation time for calculating a complete LF glottal cycle does not exceeds
2107 sec on an Intel core i7 processor running at 4.7 GHz . This makes it almost suitable for real-time articulatory

speech synthesis. .

1 Introduction

The Liljencrants-Fant glottal wave model is defined by the derivative U, (t) of the glottal signal Ug(t):
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T, is the peak time where the derivative is 0 and the amplitude is maximum.
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Figure 1: One cycle of the Liljencrants-Fant glottal wave signal. The derivative is normalized for the plot so that the
signal and its derivative have the same amplitude.

From now, we indicat by the subscript [ the left part of [I]and by r its right part
Since we want continuity between the left part (¢ < T.) and the right one (¢t > T.) and therefore, U, .(T.) = —E, we

have
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Once Ty, is provided, § is obtained by solvingusing Newton’s method using T% as start value for 3.
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& (substitute [§]in [6)
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Since we want Uy (0) = 0, we have aC} = wy. posing
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Ugi(t) = Fy(wy + asin(wgt)e™ — w, cos(wyt)e™)
Now, we integrate the right part

/ ~B(=T) _ ~B(Ty=T.)
ﬁT

_ L —se-10) _ ~p(1o-T0)
ﬁTa( 56 t)+ C.

Now we want Uy, (Tp) = 0 to ensure continuity beteen two cyles.
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Since we want continuity in Te, we have Uy (Te) = Uy (Te):
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Now, we want to fix the signal amplitude Uy where Uy is maximum when ¢ = T}, and therefore:

sin(wy T, )—O:>Tp—1
Wy

Up = Ugt(T,) = Fawg(1 + €*T7) = Fywy(1 4 ¢“7)

(10)

(13)

(14)

(15)

(16)



Therefore, E and a are obtained by solving the non linear system of equations provided by equations and in
which F, has bee replaced by its definition and .
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This is achieved by using a 2D Newton’s method. The term e~%?¢ has been set into the () in order to avoid "o
overfloats during iteration. Initial value for a and E have empirically been set to 1.53419 f0 and 5.8251 Uy fy. The Newton’s
Gradient Descent applied on the non-linear system [20| converges most often in less than 10 iterations.

Eventually, we can compute:
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2 Parameters

Equationand systemdo not have solutions for any values of parameters T}, ( wlg ), Te and T,, and they are commonly
replacted by parameters more easy to handle. here we will use those proposed by Fant [I].
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The input parameter R, can also be replaced by the opening quotient
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Fant also propose a single shape parameter Ry for controlling the glottis signal:
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