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Abstract

Here we present the numerical method used for generating Liljencrants-Fant glottal flow implemented in Acwato
software (available at acwato.com). The computation time for calculating a complete LF glottal cycle does not exceeds
2 10−4 sec on an Intel core i7 processor running at 4.7 GHz . This makes it almost suitable for real-time articulatory
speech synthesis. .

1 Introduction

The Liljencrants-Fant glottal wave model is defined by the derivative U ′
g(t) of the glottal signal Ug(t):

U ′
g(t) =

{
−Eea(t−Te) sin(ωgt)

sin(ωgTe)
0 < t < Te

− E
βTa

(e−β(t−Te) − e−β(T0−Te)) Te < t < T0

(1)

with
ωg =

π

Tp
(2)

Tp is the peak time where the derivative is 0 and the amplitude is maximum.

U0

Tp

Te

−E

T0 = 1
f0

Ta

Figure 1: One cycle of the Liljencrants-Fant glottal wave signal. The derivative is normalized for the plot so that the
signal and its derivative have the same amplitude.

From now, we indicat by the subscript l the left part of 1 and by r its right part
Since we want continuity between the left part (t < Te) and the right one (t > Te) and therefore, U ′

gr(Te) = −E, we
have

βTa = 1− e−β(T0−Te) (3)

Ta −
1− e−β(T0−Te)

β
= 0 (4)

Once Ta is provided, β is obtained by solving 4 using Newton’s method using 1
Ta

as start value for β.
Since ∫

g(x)eaxdx =
1

a
{g(x)eax −

∫
g′(x)eaxdx}

If we pose:

Ea =
−Ee−aTe

sin(ωgTe)
(5)
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Ugl =

∫
−Eea(t−Te)

sin(ωgt)

sin(ωgTe)
dt

= Ea

∫
sin(ωgt)e

atdt (6)

= Ea
1

a
{sin(ωgt)e

at −
∫

ωg cos(ωgt)e
atdt+ Cl}

= Ea
1

a
{sin(ωgt)e

at − 1

a
{ωg cos(ωgt)e

at + ω2
g

∫
sin(ωgt)e

atdt+ Cl}} (7)

⇔ (6 = 7)

(1 +
ω2
g

a2
)Ea

∫
sin(ωgt)e

atdt = Ea
1

a
{sin(ωgt)e

at − ωg

a
cos(ωgt)e

at + Cl} (8)

⇔ (substitute 8 in 6)

Ugl(t) = Ea

∫
sin(ωgt)e

atdt (9)

=
Ea

1 +
ω2

g

a2

1

a
{sin(ωgt)e

at − ωg

a
cos(ωgt)e

at + Cl}

=
Ea

a2 + ω2
g

{a sin(ωgt)e
at − ωg cos(ωgt)e

at + aCl} (10)

Since we want Ugl(0) = 0, we have aCl = ωg. posing

Fa =
Ea

a2 + ω2
g

(11)

Ugl(t) = Fa(ωg + a sin(ωgt)e
at − ωg cos(ωgt)e

at) (12)

Now, we integrate the right part

Ugr(t) =

∫
− E

βTa
(e−β(t−Te) − e−β(T0−Te))

= − E

βTa
(− 1

β
e−β(t−Te) − e−β(T0−Te)t) + Cr (13)

Now we want Ugr(T0) = 0 to ensure continuity beteen two cyles.

⇒ Cr = − E

βTa
(
1

β
+ T0)e

−β(T0−Te) (14)

Ugr(t) =
E

βTa
{ 1
β
e−β(t−Te) + e−β(T0−Te)(t− 1

β
− T0)} (15)

Since we want continuity in Te, we have Ugl(Te) = Ugr(Te):

Fa{ωg + a sin(ωgTe)e
aTe − ωg cos(ωgTe)e

aTe} =
E

βTa
{ 1
β
+ e−β(T0−Te)(Te −

1

β
− T0)} (16)

⇔ Using 5 and 11

1

a2 + ω2
g

{ ωge
−aTe

sin(ωgTe)
+ a− ωg

cos(ωgTe)

sin(ωgTe)
} =

−1

βTa
{ 1
β
+ e−β(T0−Te)(Te −

1

β
− T0)} (17)

Now, we want to fix the signal amplitude U0 where Ugl is maximum when t = Tp and therefore:

sin(ωgTp) = 0 ⇒ Tp =
π

ωg
(18)

U0 = Ugl(Tp) = Faωg(1 + eaTp) = Faωg(1 + e
a π

ωg ) (19)
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Therefore, E and a are obtained by solving the non linear system of equations provided by equations 17 and 19 in
which Fa has bee replaced by its definition (11 and 5).

1
a2+ω2

g
{ ωge

−aTe

sin(ωgTe)
+ a− ωg

cos(ωgTe)
sin(ωgTe)

}+ 1
βTa

{ 1
β + e−β(T0−Te)(Te − 1

β − T0)} = 0
ωg

(a2+ω2
g) sin(ωgTe)

(e−aTe + e
−a(Te− π

ωg
)
) + U0

E = 0
(20)

This is achieved by using a 2D Newton’s method. The term e−aTe has been set into the () in order to avoid e
a π

ωg

overfloats during iteration. Initial value for a and E have empirically been set to 1.53419 f0 and 5.8251U0f0. The Newton’s
Gradient Descent applied on the non-linear system 20 converges most often in less than 10 iterations.

Eventually, we can compute:

Ug(t) =

{
Fa(ωg + a sin(ωgt)e

at − ωg cos(ωgt)e
at) 0 < t < Te

E
βTa

{ 1
β e

−β(t−Te) + e−β(T0−Te)(t− 1
β − T0)} Te < t < T0

(21)

2 Parameters

Equation 4 and system 20 do not have solutions for any values of parameters Tp ( π
ωg

), Te and Ta, and they are commonly

replacted by parameters more easy to handle. here we will use those proposed by Fant [1].

Ra =
Ta

T0
; Rk =

Te − Tp

Tp
; Rg =

T0

2Tp
(22)

The input parameter Rg can also be replaced by the opening quotient

OQ =
1 +Rk

2Rg
=

Te

T0
(23)

Or

OQ =
1 +Rk

2Rg
+Ra (24)

Fant also propose a single shape parameter Rd for controlling the glottis signal:

Ra =
−1 + 4.8Rd

100
; Rk =

22.4 + 11.8Rd

100
; Rg =

0.25Rk(0.5 + 1.2Rk)

0.11Rd −Ra(0.5 + 1.2Rk)
(25)
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