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Abstract

The sound �eld inside interconnected acoustic ducts with varying cross-section is
modelled with a variational formulation of the Webster equation. The Sondhi model is
used to take wall admitance and visto-thermal e�ects into account. The acoustic network
of interconnected ducts is represented by a graph where each edge represents a duct
described by a one-dimensional area function. We develop here numerical methods that
allow us to solve the Webster equation in Laplace transform domain and to compute
the transfer function between two given points of the acoustic graph. Resonances are
obtained as eigenvalues of a matrix build with the area functions of the entire graph.
Graph algorithms are used to identify subgraphs responsible for anti-resonances (zeros)
of the transfer function. First, subgraphs that can be disconnected from any path joining
input and output and that behave like Helmoltz resonators. Then we point out that
subgraphs that contains cycles are also responsible for zeros in the transfer function. The
�rst ones (disconnected) can, as the poles, be obtained by computing the eigenvalues of
a matrix build with the area functions of the subgraph. The second ones (cycle) require
more numerical analysis in order to be computed from the transfer function for being used
in discrete time signal processing. Afterwards, we present experimental measurements
that validate the results of our computations. We conclude by a discussion on the most
appropriated numerical schemes for modelling acoustic properties of ducts that contains
sharp constrictions. All numerical results presented here can be reproduced with Acwato
software that can be downloaded here.
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1 Acoustic model

1.1 One dimensional propagation in a lossless pipe

It can be shown that the wave equation in a long and narrow pipe becomes one-dimensional and
takes the form of the following Webster equation

1

A(x)

∂

∂x

(
A(x)

∂p(x, t)

∂x

)
− 1

c2
∂2p(x, t)

∂t2
= 0, (1.1)

where A(x) and p(x, t) are the area cross section of the pipe and the pressure at a distance x from
the pipe input and c is the speed of sound. By narrow, we mean that its diameter is smaller than
its length. This result holds when A(x) varies little on distances in the same order of magnitude of
the pipe width. The relationship between pressure and velocity v is provided by the Euler equation
[1, p 12]

∂v

∂t
+ (v.∇)v = −∇p

ρ
, (1.2)

where ρ is the air density. Since we consider only small amplitude waves, the quadratic term in v
can been omitted. With the same one-dimensional approximation than for the Webster equation 1.1,
Euler equation 1.2 becomes

∂u(x, t)

∂t
+

A(x)

ρ

∂p(x, t)

∂x
= 0, (1.3)

with the volume velocity de�ned as u(x, t) = A(x)v(x, t).
If we work in the Laplace transform domain, the Webster equation 1.1 and the Euler equation 1.3

become
∂

∂x

(
A(x)

∂P (x, s)

∂x

)
− s2

c2
A(x)P (x, s), (1.4)

∂P (x, s)

∂x
+

ρs

A(x)
U(x, s) = 0. (1.5)

1.2 The Sondhi model

The model used here for adding visco-thermal and wall e�ects to the Webster equation has been
developed by Sondhi in order to decscribe the acoustic properties of the human vocal tract [2]. The
simplest way to analyze the vocal tract acoustic properties is to assume that :

(a) the wave motion in the vocal tract is planar and can be described by a one-dimensional
equation,

(b) the air viscosity and thermal conductivity are negligible,

(c) the vocal tract walls are non-reacting (i.e : the walls are assumed to be rigid).

The Sondhi model allows us to relax assumptions (b) and (c) while keeping the formal problem very
near to equation 1.4 that becomes

∂

∂x

(
A(x)

∂P (x, s)

∂x

)
− σ2(s)

c2
A(x)P (x, s) = 0, (1.6)
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where

σ2(s) = s(s+ β(s)), β(s) =
ω2
0

(s+ a)
+ (c1s)

1
2 . (1.7)

where the parameters ωo and a take into account the wall reaction and c1 the visco-thermal
losses. These parameters have been determined from experimental data for the human vocal tract :

ω0 = 406π rad/sec, a = 130π rad/sec and c1 = 4 rad/sec. (1.8)

Sondhi also shows (see section 4.2) that, if ω̂ is a given resonance frequency of the lossless rigid-
walled tract (β = 0), the resonance frequency and bandwidth of the corresponding lossy reacting-
walled are obtained by solving

σ2 + ω̂2 = s2 + sβ(s) + ω̂2 = 0. (1.9)

This last result is very important since, as will be seen later, poles and zeros of the lossless rigid-
walled tract can be computed very e�ciently and solving eq 1.9 provides us with the lossy reacting-
walled ones that are required for designing discrete time signal processing �lters that can be used
for achieving real time articulatory speech synthesis. Moreover, since this result holds whatever the
parameters ωo, a and c1 are, it also enables to model acoustic systems with di�erent visco-thermal
and wall e�ects.

1.3 Boundary conditions

We will here assume that the tract is terminated by a mass load at boundaries (x = 0 or x = L).
The mass load condition is expressed as

P (x, s)

U(x, s)
= τs, (1.10)

where τ is a constant which depends on the boundary opening. Here, we consider that the output
radiation can be modeled by a vibrating piston set in a ba�e. Keeping only the real term of lip
impedance, we posit

τ =
ρ

q
√

A(x)
, (1.11)

where q ∼ 2.1 for an in�nite plan ba�e [3]. Afterwards, q has been adjusted in order to better �t
experimental data on human lips radiation and is obtained by the relation [4]

q = a
√
A(x) + b, (1.12)

where �rst estimations have lead to a = −3.5cm−1 and b = 35. Substituting 1.11 into 1.10 gives

U(x, s) =
q
√

A(x)

ρs
P (x, s), (1.13)

and therefore, if either a = b = 0 or A(x) = 0, we have

U(x, s) = 0, (1.14)

which corresponds to a closed end. Hence, the boundary condition 1.13 allows to implement both
open and closed end boundary condition and to go from one to the other in a continuous way.

2 Variational formulation

2.1 Introduction

Since the Webster Equation 1.6 with boundary conditions 1.13 or 1.14 has a Sturm-Liouville
form, it can be deduced from a variational principle [5, p 119-120]. Simple junction conditions will
allow us to connect several ducts together in order to compute the resonance frequencies and transfer
functions for a vocal tract model in which nasal and sinus cavities may be taken into account [6].
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2.2 One single duct

First of all, for convenience, we make the following variable change :

z =
x

L
∈ [0, 1], f(x) =⇒ f̃(z), ∂xf(x) =⇒

1

L
∂z f̃(z). (2.1)

Henceforth, we will no longer overline the functions of z. Equations 1.5 and 1.6 become

1

L

∂P (z, s)

∂z
+

ρs

A(z)
U(z, s) = 0, (2.2)

∂

∂z

(
A(z)

∂P (z, s)

∂z

)
− σ2L2

c2
A(z)P (z, s) = 0. (2.3)

Let us now consider the following functional :

S[z, P (z), ∂zP (z)] =

∫ z1

z0

L(z, P (z), ∂zP (z))dz +G0(P (z0)) +G1(P (z1)). (2.4)

From now, we will write S[P (z)] instead of S[z, P (z), ∂zP (z)]. The functions P (z) which lead to
extrema of this functional verify the following di�erential system [7, p 240-251]

∂L
∂P

− d

dz

∂L
∂(∂zP )

= 0, (2.5)

∂L
∂(∂zP )

|z0 −
∂G0

∂P (z0)
= 0, (2.6)

∂L
∂(∂zP )

|z1 +
∂G1

∂P (z1)
= 0. (2.7)

If we posit

L (z, P, ∂zP ) =
1

L
A(z)

[
(∂zP (z))

2
+

L2σ2

c2
P 2(z)

]
, (2.8)

S represents the action integral, and L represents the Lagrangian of the pressure �eld inside the duct.
Equation 2.5 with the Lagrangian 2.8 gives the wave equation 2.3. So, if G0(P (z0)) = G1(P (z1)) = 0,
extremals of the action 2.4 with the lagrangian 2.8 are solutions of the wave equation 2.3 with implicit
boundary conditions

[∂zP (z)]z=0 = [∂zP (z)]z=1 = 0, (2.9)

which gives the closed input condition 1.14, but not the open output condition 1.13. Indedd, substi-
tuting the closed input condition 1.14 into Euler equation 2.2 gives

[∂zP (z, s)]z=0 = 0 ∀s, (2.10)

whereas substituting the output condition 1.13 yields

A(1)

L

[
∂P (z, s)

∂z

]
z=1

+ q
√
A(1)P (1, s) = 0. (2.11)

Conditions 2.10 and 2.11 are derived from equations 2.6 and 2.7 by positing

S =

∫ 1

0

L(z, P, ∂zP )dz + q
√

A(1)P 2(1). (2.12)

The variational formulation presented here for a duct open at the output end (oral vowels), remains
available for a duct closed at both ends (voiced labial occlusive) without having to rede�ne the
functional. Indeed, if A(1) = 0 (duct closed at lips), the functional S (eq 2.12) automatically takes
the required form for a duct closed at both ends.
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2.3 Three ducts linked together

Figure 2.1 � Three ducts connected represented by their area functions

Now, we are going to formulate the problem when three ducts are connected [8]. First of all, we
will associate an area function to each duct and name it Aα(z) , α = 1, 2, 3. (see �g 2.1).

Then we build the following action integral associated to each of the three area functions denoted
by α

Iα =

∫ 1

0

1

Lα
Aα(z)

[
(∂zPα(z))

2
+

L2
ασ

2

c2
P 2
α(z)

]
dz, (2.13)

where Lα is the length of the duct α.
We now introduce simple physical junction conditions which are pressure continuity and �ow conser-
vation expressed respectively as

P1(1) = P2(0) = P3(0), (2.14)

A1(1)

L1
∂zP1(1) =

A2(0)

L2
∂zP2(0) +

A3(0)

L3
∂zP3(0). (2.15)

Now, aiming to get a variational formulation of the wave equation 2.3, inside any duct, we built one
functional Sα for each of the three tracts. Let

S1[P1;P2, P3] = I1 − 2P1(1)

[
A2(0)

L1
∂zP2(0) +

A3(0)

L3
∂zP3(0)

]
, (2.16)

S2[P2;P1, P3] = I2 + 2P2(0)

[
A1(1)

L1
∂zP1(1)−

A3(0)

L3
∂zP3(0)

]
+ξP2(0) [2P1(1)− P2(0)] + q

√
A2(1)P

2
2 (1), (2.17)

S3[P3;P1, P2] = I3 + 2P3(0)

[
A1(1)

L1
∂zP1(1)−

A2(0)

L2
∂zP2(0)

]
+ξP3(0) [2P1(1)− P3(0)] + q

√
A3(1)P

2
3 (1), (2.18)

where ξ is an arbitrary constant (̸= 0) and S1[P1;P2, P3] means that only the function P1 may
vary inside the functional S1. The two other functions P2 and P3 are considered as �xed for this
functional. Considering the variational problem

δS1

δP1
= 0,

δS2

δP2
= 0,

δS3

δP3
= 0, (2.19)

and applying the di�erential system (equations 2.5, 2.6 and 2.7) to each of the functional S1, S2 and
S3, we obtain the required wave equation 2.3 for each duct, the junction conditions 2.14 and 2.15,
the radiation conditions (lips and nostrils) for the duct α = 2 and α = 3 and the glottis condition
for the duct α = 1. We notice here that, for a given i, a term containing ∂zPi cannot occur outside
the integral of the corresponding action Si. We see for example that the boundary term of action
S1 contains only terms in ∂zP2 and ∂zP3 and, from the variational point of view, those derivatives
are constant for the action S1. We also notice that the �ow conservation is imposed on S1 an so,
considering that this conservation is also obtained on S2 and S3, the pressure continuity is imposed
on those last two actions for each non-null value taken by ξ.
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3 Numerical method

3.1 Introduction

In this section, we will only consider lossless and rigid walled ducts because, in the framework
of the Sondhi model, loss and wall e�ects can be treated afterwards. Indeed, resonance frequencies
and bandwidths of a lossy, reacting walled duct can be deduced from resonance frequencies of the
lossless, rigid walled corresponding duct by solving equation 1.9. For a lossless rigid walled tract, we
have ω0 = a = c1 = 0 and thus β = 0 (see equations 1.7). Since s = iω, we have σ2 = −ω2 and the
wave equation 2.3 becomes

∂z (Aα(z)∂zPα(z)) +
ω2L2

α

c2
Aα(z)Pα(z) = 0, (3.1)

for each duct α included in the problem. The complex equation (σ2 instead of −ω2) will be treated
in section 3.8. We will see that the variational formulation allows us to compute the resonance
frequencies �rst for one single duct and then for a multi duct system. After that we will check if the
numerical approximations of solutions verify the wave equation with required boundary conditions.

3.2 The Rayleigh-Ritz method for a lossless single duct

We assume here that the solution may be approximated by the development

P (z) =

n∑
i=1

Ciηi(z), (3.2)

where ηi(z) i = 1 , ..., n are n functions chosen in a convenient complete set of linearly independent
functions. Here, we have chosen the n �rsts Tchebychev polynomials. Substituting Lagrangian 2.8
into action 2.12 and replacing P by its development 3.2 gives

S =

∫ 1

0

1

L
A(z)


(

n∑
i=1

Ciη
′

i(z)

) n∑
j=1

Cjη
′

j(z)


−L2ω2

c2

(
n∑

i=1

Ciηi(z)

) n∑
j=1

Cjηj(z)

 dz (3.3)

+ q
√
A(1)

(
n∑

i=1

Ciηi(z)

) n∑
j=1

Cjηj(z)

 ,

where η
′
(z) denotes ∂zη(z). Then, the functional S becomes an ordinary quadratic function with

respect to the coe�cients Ci. Because we are looking for the extremals of this action, we ask

∂S

∂Ci
= 0 ∀i ∈ [1, n]. (3.4)

Since,

∂

∂Ci

n∑
j=1

Cjηj(z) =

n∑
j=1

δijηj = ηi and
∂

∂Ci

n∑
j=1

Cjη
′

j(z) =

n∑
j=1

δijη
′

j = η
′

i, (3.5)

where

δij =

{
1 if i = j,
0 otherwise,

(3.6)

for each i = 1, ..., n, we obtain

1

L

n∑
j=1

Cj

∫ 1

0

A(z)

{
η

′

i(z)η
′

j(z)− λ
L2

c2
ηi(z)ηj(z)

}
+ q
√

A(1)

n∑
j=1

Cjηi(1)ηj(1) = 0. (3.7)

where λ = ω2. The resulting system is now written

n∑
j=1

(Vij − λWij)Cj = 0, (3.8)

6



where Vij and Wij are given by

Vij =
1

L

∫ 1

0

A(z)η
′

i(z)η
′

j(z)dz + q
√
A(1)ηi(1)ηj(1) , (3.9)

Wij =
L

c2

∫ 1

0

A(z)ηi(z)ηj(z)dz. (3.10)

The system 3.8 may be written on the following matrix form

(W−1V − λ1)C = 0, (3.11)

1 denoting the identity matrix and C is the vector whose components are the Ci. Such homogeneous
system has non-trivial solutions if and only if λ is eigenvalue of the matrixW−1V . The corresponding
eigenvector C provides the resonance mode by substituting its components into equation 3.2.

3.3 Eigenmodes for a three ducts problem

We will now consider the three functionals S1, S2 and S3 given by equations 2.16, 2.17 and 2.18
and pose, for each value of α ∈ {1, 2, 3}

Pα(z) =

Nα+nα∑
i=Nα+1

Ciηiα(z) , Nα =

α−1∑
i=1

ni , (N1 = 0), iα = i−Nα (3.12)

Now, we ask
∂Sα

∂Ci
= 0, ∀ i ∈ [Nα + 1, Nα + nα] (3.13)

nα being the number of coordinate functions chosen for the duct α and N =
∑

α nα, the number of
coe�cients Ci.

For each value of α, eq 3.13 represents nα equations with N unknowns. For α = 1, the last
equation respects the fact that P2 and P3 are considered as �xed for the action S1. For α = 2, P1

and P3 �xed for S2 and so on. Equation 3.13 eventually becomes one system of N equations and N
unknowns

N∑
j=1

(Vij − λWij)Cj = 0, (3.14)

which may be written under the form

(W−1V − λ1)C = 0. (3.15)

As example, here we compute the coupling terms with duct α = 2 in action S1 :

− 2P1(1)
A2(0)

L2
∂zP2(0) = −2

A2(0)

L2

(
n1∑
k=1

Ckηk1
(1)

) n1+n2∑
j=n1+1

Cjη
′

j2(0)


( ∂
∂Ci

∀ i=1 ,..., n1)

============⇒

− 2
A2(0)

L2
ηi1(1)

n1+n2∑
j=n1+1

Cjη
′

j2(0) =

n1+n2∑
j=n1+1

Cj (−2
A2(0)

L2
ηi1(1)η

′

j2(0))

⇒ Vij = −2
A2(0)

L2
ηi1(1)η

′

j2(0) ∀ i ∈ [1, n1], j ∈ [n1 + 1, n1 + n2].

(3.16)

The resulting matrices V and W are detailed in �g 3.1.
The resonance frequencies are given by the eigenvalues of the matrix W−1V . The solutions P1,P2

and P3 are �nally obtained by substituting the corresponding eigenvector coe�cients into 3.12.

3.4 Solutions for each value of the frequency

As will be shown in section 4.1, the tansfer function is given by the volume velocity at the output
U2(1, s) while having imposed unit volume velocity at the input U0(0, s) = 1. With this input
condition, we can compute the transfer function by computing the pressure �eld and the volume
velocity at the output for each value of the frequency.

The Euler equation 2.2 with U0(0, s) = 1 gives

A1(0)

L1
∂zP1(0, s) = −ρsU1(0, s) = −ρs. (3.17)
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V =

1, ................ , n1, n1 + 1, ............. , n1 + n2, n1 + n2 + 1, ......... , N

2
L1

∫ 1

0
A1(z)[η

′

i1
(z)η

′

j1
(z)]dz

2A1(1)
L1

ηi2(0)η
′

j1
(1)

+2ξηi2(0)ηj1(1)

2A1(1)
L1

ηi3(0)η
′

j1
(1)

+2ξηi3(0)ηj1(1)

− 2A2(0)
L2

ηi1(1)η
′

j2
(0)

2
L2

∫ 1

0
A2(z)[η

′

i2
(z)η

′

j2
(z)]dz

−2ξηi2(0)ηj2(0)

+2q
√

A2(1)ηi2(1)ηj2(1)

− 2A2(0)
L2

ηi3(0)η
′

j2
(0)

− 2A3(0)
L3

ηi1(1)η
′

j3
(0)

− 2A3(0)
L3

ηi2(0)η
′

j3
(0)

2
L3

∫ 1

0
A3(z)[η

′

i3
(z)η

′

j3
(z)]dz

−2ξηi3(0)ηj3(0)

+2q
√
A3(1)ηi3(1)ηj3(1)

W =

2L1

c2

∫ 1

0
A1(z)ηi1(z)ηj1(z)dz 0 0

0 2L2

c2

∫ 1

0
A2(z)ηi2(z)ηj2(z)dz 0

0 0 2L3

c2

∫ 1

0
A3(z)ηi3(z)ηj3(z)dz

Figure 3.1 � Detail of matrices V and W

This condition is obtained using eq 2.7 by adding the term−2ρsP1(0, s) to the functional S1 (eq 2.16).
In this case, the calculation in section 3.3 gives instead of system 3.14

N∑
j=1

(Vij − λWij)Cj = Gi, (3.18)

where λ = −σ2, σ is given by eq 1.7. and

Gi =

{
2ρs ηi(0) ∀i = 1, ... , n1

0 otherwise.
(3.19)

This system is no longer homogeneous and has a solution for each value of λ except for the eigen
values of W−1V , for which the matrix V − λW is no more invertible.

3.5 Acoustic graph

This method can now be extended to an arbitrary number of ducts interconnected by imposing
pressure continuity and �ow conservation at each junction [9]. From now, we will used terms from
graph theory glossary such as edge, vertex, graph, subgraph, path whose de�nitions can be
found in graph theory book such as [10].

Figure 3.2 � Acoustic graph representation : each edge represents a duct whose geometry is
described by an area function. The arrows show the x direction of the area function.
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3.6 Veri�cation of solutions

Now, we would like to check if the approximated solutions obtained by this method for a lossless
rigid-walled acoustic graph (λ = ω2) verify both the wave equation and its boundary conditions.
The lossy reacting-walled case will be discussed in section 3.8.
This will be done with two types of area functions as illustrated by �g 2.1 :

• Cubic splines for continuous area functions.
• Step functions more appropriated for disontinued area functions.

Let a single duct be described by its area function A(z). We want here to check if the function P (z)
obtained by this method veri�es equation 3.1. In order to do this we de�ne the error on the solution
Ew(s) by

Ew(s) =

√√√√∫ 1

0

[
A(z)P (z) + c2

λL2 ∂z (A(z)∂zP (z))
]2

dz∫ 1

0
(A(z)P (z))2dz

, (3.20)

where the term inside the integral on numerator is expected to be 0 if the Webster equation is veri�ed,
whereas the denominator normalizes the error Ew to a relative value. For each duct extremity, we
have to check if the boundary conditions we imposed match the numerical solution we have obtained.
In the case of the solution of the non homogeneous system 3.18 for a given value of the frequency,
the volume velocity at the input should be Ui(zi, s) = 1, zi beeing the z coordinate at input (0 or
1). We therefore de�ne the input error

Ei(s) = U(zi, s)− 1. (3.21)

If the vertex of the acoustic graph corresponding to the duct extremity is an opened end, we have
to check the impedance at the duct end. We de�ne boundary error for open boundaries at the point
zo(0 or 1) as the di�erence between the obtained impedence an the target impendance de�ned by
equation 1.10

Eo(s) =

P (zo,s)
U(zo,s)

− Ztarget

|Ztarget|
=

P (zo,s)
U(zo,s)

− τs

|τs|
. (3.22)

If the considered boundary is closed at the point zc (A(zc) = 0 in eq 1.13), the target impedance is
∞, we will use the inverse of impedance as error since in that case, it should be 0.

Ec(s) =
U(zc, s)

P (zc, s)
(3.23)

When a duct extremity has more than one duct connected, it is a junction vertex pj at zj ,
we must check errors on pressure continuity and �ow conservation. We de�ne the error on pressure
continuity as

Ep(s) =
max(Pα(zj))−min(Pα(zj))

max(Pα(zj))
, (3.24)

where max(Pα(zj)) is the maximum of pressure computed at each duct extremity connected to the
considered vertex and min(Pα(zj)) is the minimum of pressure at the same vertex .

We de�ne the error on �ow conservation as

Ef (s) =

∑
α∈pj

sgn(α)Aα(zα)
Lα

∂zPα(zα)∑
α∈pj

∣∣∣Aα(zα)
Lα

∂zPα(zα)
∣∣∣ , (3.25)

where sgn(α) = 1 if the duct is connected to the vertex from its start (zα = 0) and sgn(α) = −1
if it is connected from its end (zα = 1).

3.7 Eigenmodes for lossless tract

Here, we will check that the eigenmodes obtained by solving eq 3.14 verify both the lossless
Webster equation 3.1 and boundary conditions. If we consider that the approximation obtained by
the variational method is corrupted only by small but fast oscillations around the exact solution, its
derivative will be stained by signi�cant errors. So, Ew(s) being obtained by using second derivative
is considerable as can be seen in �g 3.3 that shows the forth resonance mode in the duct α = 1 of
the acoustic graph described in �g 2.1.
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− c2

λ ∂x (A(x)∂xP (x))

A(x)P (x)

Figure 3.3 � Comparison of the two terms of the Webster equation for an eigenmode at 2053.02Hz
and corresponding errors.

Consequently, we will avoid derivating the obtained approximation by integrating the wave equa-
tion. Indeed, integration of equation 3.1 between 0 and z ∈ [0, 1] gives

A(z)∂zP (z) + F (z) + C1 = 0, (3.26)

where C1 is an integration constant and F (z) is de�ned as

F (z) =
λL2

c2

∫ z

0

A(ξ)P (ξ)dξ. (3.27)

Now, we compute the integration constant C1 in order to minimize the left term of equation 3.26
at least mean square all along the duct length and so, we minimize the quantity

Etot(P ) =

∫ 1

0

(A(z)∂zP (z) + F (z) + C1)
2
dz, (3.28)

by asking
∂Etot(P )

∂C1
= 0, (3.29)

which yields

C1 = −
∫ 1

0

(A(z)∂zP (z) + F (z)) dz. (3.30)

And we can now compute the mass �ow using integration less sensitive to small oscillations using

A(z)∂zP (z) = −F (z)− C1, (3.31)

and therefore, using the Euler equation 2.2

U(z, s) =
−F (z)− C1

ρsL
. (3.32)

− 1
ρsA(x)∂xP (x)

U(x)

Figure 3.4 � Comparison between volume velocities using derivative and using U(x) from eq 3.32.

Now, we would like to check if the derivative computed by integration (eq 3.31) represents a good
approximation of the exact wave function derivative. To do this, we integrate the wave equation a
second time. Integrating equation 3.26 between 0 and z ∈ [0, 1] leads to∫ z

0

A(ξ)∂ξP (ξ)dξ +

∫ z

0

F (ξ)dξ + C1z + C2 = 0, (3.33)

where C2 is a second integration constant. Integrating the �rst term of eq 3.33 by parts gives

A(z)P (z)−
∫ z

0

(∂ξA(ξ))P (ξ)dξ +

∫ z

0

F (ξ)dξ + C1z + C2 = 0, (3.34)

which, for z = 0 gives
C2 = −A(0)P (0). (3.35)

So we can check the accuracy of our solutions by comparing A(z)P (z) with

ÃP (z) =

∫ z

0

(∂ξA(ξ))P (ξ)dξ −
∫ z

0

F (ξ)dξ − C1z − C2. (3.36)
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If stepwise area functions are used to describe the acoustic graph geometry :

A(z) = Ai ∀ zi < z < zi+1 : i = 0, ...., n, (3.37)

and if we want to apply the previous method to such functions, we have to use the delta Dirac
distribution in order to compute the second term in equation 3.34. So

∂zA(z) =

{
(Ai −Ai−1)δ(z − zi) if z = zi,
0 otherwise,

(3.38)

where the Dirac delta function δ(z) is de�ned by

δ(z) =

{
∞ if z = 0,
0 otherwise,

(3.39)

∫ +ϵ

−ϵ

δ(z)dz = 1 and

∫ a+ϵ

a−ϵ

δ(z − a)Ψ(z)dz = Ψ(a) ∀ ϵ > 0. (3.40)

That gives ∫ z

0

(∂ξA(ξ))P (ξ)dξ =
∑

i | zi<z

(Ai −Ai−1)P (zi). (3.41)

Therefore, we can now check the wave equation without using approximation derivatives, except
to obtain the �rst integration constant (see eq 3.30). We de�ne Ẽw(s) the same way as Ew(s) by

Ẽw(s) =

√√√√∫ 1

0
(A(z)P (z)− ÃP (z))2dz∫ 1

0
(A(z)P (z))2dz

. (3.42)

The error de�nitions 3.22 and 3.23, remain unchanged but U(x, s) is computed using 3.32 instead
of 2.2. The error on pressure continuity is unchanged and error on �ow conservation is computed by
substituting eq 3.31 in 3.25.

ÃP (x)

A(x)P (x)

Figure 3.5 � Comparison between A(x)P (x) and ÃP (x)

Comparing �gure 3.3 and 3.5, we see that the two curves much better match and Ew is highly
reduced. Here, we have used n1 = n2 = n3 = 8 and, if we either increase the number of base
functions or check a lower frequency mode, the two curves matching is even better. Errors on
boundary conditions (Ec, Ep and Ef ) also show a great improvements. Moreover, the output error
(Eo) for the duct α = 2 decreases from −3.26 10−1 to −9.23 10−9.

Nevertheless, the error on �ow conservation remains signi�cant. This occurs once one of the ducts
connected to the junction exhibits strong area function variations. We will see in section 6 that this
problem can be solved by modifying our numerical scheme.

3.8 Solutions for a multi branch lossy tract

If we want to compute the transfer function for each value of the frequency, we have to solve
eq 3.18 where λ and the Cj coe�cients are complex numbers. The technique used in section 3.7 is
here developed in the complex case. When losses have to be taken into account, equation 3.1 must
be replaced by equation 2.3 . Now, because σ2 is a complex number, equation 2.3 has to be solved
in the complex domain with

λ = −σ2 = λr + iλi and P (z) = Pr(z) + iPi(z). (3.43)

Consequently, equation 2.3 is split into real and imaginary parts given by

∂z (A(z)∂zPr(z)) +A(z)
L2

c2
(λrPr(z)− λiPi(z)) = 0, (3.44)

∂z (A(z)∂zPi(z)) +A(z)
L2

c2
(λrPi(z) + λiPr(z)) = 0. (3.45)
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That gives A(z)P (z) as functions of its derivatives

A(z)Pr(z) =
−c2

L2(λ2
r + λ2

i )
{λr∂z(A(z)∂zPr(z)) + λi∂z(A(z)∂zPi(z))} (3.46)

A(z)Pi(z) =
−c2

L2(λ2
r + λ2

i )
{λr∂z(A(z)∂zPi(z))− λi∂z(A(z)∂zPr(z))} (3.47)

The coe�cients of the Chebyshev series expansion P (z) =
∑

j Cjηj(z) are now complex : Cj =

Cr
j + i Ci

j . Real and imaginary parts of solutions are given by

Pr(z) =
∑
j

Cr
j ηj(z) ; Pi(z) =

∑
j

Ci
jηj(z). (3.48)

Integrating equations 3.44 and 3.45 gives us

A(z)∂zP(r,i)(z) + F(r,i)(z) + C1(r,i) = 0, (3.49)

where the subscripr (r, i) means that the equation actually represents two equations : one with the
subscript r and and other with the subscript i with

Fr(z) =
L2

c2

∫ z

0

A(ξ) {λrPr(ξ)− λiPi(ξ)} dξ, (3.50)

Fi(z) =
L2

c2

∫ z

0

A(ξ) {λrPi(ξ) + λiPr(ξ)} dξ, (3.51)

C1r and C1i being two integration constants.
Minimizing discrepancies to equations 3.49 at least mean square gives

C1(r,i) = −
∫ 1

0

[
A(z)∂zP(r,i)(z) + F(r,i)(z)

]
dz. (3.52)

Substituting equation 3.49 into Euler equation 2.2 gives

U(z, s) = − (Fr(z) + C1r) + i(Fi(z) + C1i)

ρsL
. (3.53)

Integrating equations 3.49 gives

A(z)P(r,i)(z)−
∫ z

0

∂ξ(A(ξ))P(r,i)(ξ)dξ +

∫ z

0

F(r,i)(ξ)dξ + C1(r,i)z + C2(r,i) = 0, (3.54)

which, for z = 0 gives
A(0)P(r,i)(0) = −C2(r,i), (3.55)

and equation 3.36 becomes

ÃP (r,i)(z) =

∫ z

0

∂ξ(A(ξ))P(r,i)(ξ)dξ −
∫ z

0

F(r,i)(ξ)dξ − C1(r,i)z − C2(r,i). (3.56)

All errors de�ned in section 3.6 (Ew, Ei, Eo, E2c, E1g, E2g, Ep and Ef ) become complex numbers.

ÃP r(x)A(x)Pr(x)

A(x)Pi(x) ÃP i(x)

ÃP r(x)A(x)Pr(x)

A(x)Pi(x) ÃP i(x)

Ui(x)

Ur(x) Ur(x)

Ui(x)

Figure 3.6 � Solution in the duct α = 1 of the lossy acoustic graph in �g 2.1 at resonance frequency
2053.02Hz (left) and away from it at 2030Hz (right).
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The left side of �gure 3.6 shows the solution for a lossy tract computed with the default Sondhi
parameteres obtained by solving equation 3.18 in the complex domain at resonance frequency
2053.02Hz. The real part of each function is plotted in light colour. In that case, we see that
P (x, s) is nearly real wheras U(x, s) is nearly imaginary. As can be seen on the right side of �g 3.6,
if we move away from the resonance, both real and imaginary parts of P (x, s) and U(x, s) become
signi�cant.

4 The transfer function

4.1 Solving the non homogeneous system

The transfer function can be de�ned as the ratio, in the Laplace transform domain, of the volume
velocity at the output Uo(s) = U(1, s) to the volume velocity at the input Ui(s) = U(0, s)

H(s) =
Uo(s)

Ui(s)
, (4.1)

which is equivalent to the Laplace transform of the response at the output to a volume velocity
impulsion at the input at time t = 0. Indeed, if

u(0, t) = δ(t), (4.2)

then, from de Diract δ de�nition (3.39)

Ui(s) = U(0, s) =

∫ ∞

0

δ(t)e−stdt = e0 = 1, (4.3)

and so, in this case the transfer function is given by Uo(s). Substituting the impulse response condi-
tion 4.3 into Euler equation 2.2 yields to the boundary condition[

A(z)

L
∂zP (z)

]
z=0

= −ρsU(0, s) = −ρs, (4.4)

that requires solving the non homogeneous system 3.18. For each value of λ (so for each s = iω),
we can compute the solutions of complex Webster equation 2.3 by computing the solutions of the
system 3.18 and substitute them into eq 3.48. Equations 4.1, 4.3, 2.2 and 3.53 give

H(s) = Uo(1, s) = −Al(1)

ρsLo
∂zPo(1, s)

=
1

ρLos
[(Fr(1, s) + C1r) + i(Fi(1, s) + C1i)] . (4.5)

4.2 From poles and zeros of the lossless tract

The transfer function can also be expressed in terms of its poles and zeros :

H̃(s) = H0

np∏
k=1

pkp
∗
k

(s− pk)(s− p∗k)

nz∏
l=1

(s− zl)(s− z∗l )

zlz∗l
, (4.6)

where the pk are the np �rst poles and zl the nz �rst zeros of the acoustic system. Zeros occur
when subsidiary tracts are connected to the main tract by imposing pressure continuity and �ow
conservation at tract connections (see section 3.3).

Thanks to the Sondhi model, once we have computed the poles and zeros of the lossless rigid-
walled acoustic system, we can compute the corresponding poles and zeros of the lossy reacting-walled
one by solving equation 1.9

s2 + sβ(s) + ω̂2 = 0.

Using the newton method for �nding the zeros of a non linear function and taking s = iω̂ as starting
point for the Newton algorithm provides solutions in few iterations. Moreover, since our main goal
is to achieve real time articulatory speech synthesis, poles and zeros are all what is required to
implement discrete time signal processing �lters as described in [11, p. 296].

Hence, we �rst compute the poles and zeros of the lossless acoustic graph (ω̂). Then we solve
equation 1.9 to obtain the corresponding lossy ones and substitute the resulting pk and zk into
eq 4.6. The constant H0 = H(0) needed to compute the transfer function this way is obtained by
the previous method but this time, we have only to solve the system 3.18 once instead of solving it
for each frequency value. After that, computation of H(s) is much more faster using equation 4.6.
As seen in section 3.3, the resonance frequencies of the lossless acoustic graph are given by the
eigenvalues of the matrix W−1V .
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4.3 Getting the zero frequencies

As can be seen on the orange curve in �g 4.1 obtained with the acoustic graph from �gure 2.1,
once a tract (α = 3) is connected to the Input/Output path (α = 1, α = 2), the lossless transfer

function Ĥ(s), computed with eq 4.5 but with ω0 = a = c1 = 0, has not only poles but also
zeros. In such a case, the non homogeneous solutions (section 3.8 with λi = 0) at the frequencies
corresponding to the zeros, have P2(z, s) = U2(z, s) = 0 ∀z in the output duct (α = 2). Therefore,
the pressure continuity at junction requires P1(1, s) = P3(0, s) = P2(0, s) = 0. We therefore identify
the zero of the transfer function to the poles of the duct α = 3 where a null pressure is imposed at
the input. The output boundary condition 2.11 does not allows to impose P = 0 but we can impose
a disconnection impedance Zd as small as we want but not zero by adding the term ζP 2

3 (0, s), ζ
beeing a large number, to the functional S3 in equation 2.18 where connection terms have been
removed. This yields by eq 2.6 to the boundary condition

A3(0)

L3
∂zP3(0, s) + ζP3(0, s) = −ρsU3(0, s) + ζP3(0, s) = 0, (4.7)

and hence the disconnection impedance is given by,

Zd =
P3(0, s)

U3(0, s)
=

ρs

ζ
. (4.8)

We also de�ne the error on disconnection impendance the same way we de�ned the error on output
impedance in eq 3.22 with

Ed(s) =

P3(0,s)
U3(0,s)

− Zd

|Zd|
= ζ

P3(0,s)
U3(0,s)

− ρs
ζ

|ρs|
. (4.9)

In the example used here, we have set ζ = 106. The algorithm used to compute the fast transfer

|H(s)||H̃(s)|

|Ĥ(s)|

Figure 4.1 � modules of Ĥ(s), H(s)| and H̃(s) computed for the acoustic graph in �g 2.1 with
the number of bases functions n1 = n2 = n3 = 8

function H̃(s) using 4.6 is eventually :
• Compute the poles of the lossless tract by calculating the eigenvalues of the matrix W−1V .
• Build the V3 and W3 matrices for the subtract α = 3 with boundary condition 4.7 and
compute the eigen values of the matrix W−1

3 V3 that are identi�ed to the lossless zeros.
• Compute the lossy poles and zeros by solving eq 1.9 for each pole and zero found previously.
• Substitute the resulting pk's and zl's into equation 4.6

Comparing the resulting transfer functions H̃(s) and H(s) in �gure 4.1, we see that both poles, zeros

and bandwith are correct but H̃(s) shows a strong damping at high frequencies.

4.4 Numerical precision

We can see in �g 4.2, where the number of bases functions has been increased to 10 that the
damping is reduced, high frequecies poles and zero are moved and new ones occur. This is normal
since, for a high frequency solution, the highest degree base function must have at least as much
oscillation that the sound �eld for that frequency. Moreover, the size of the matrices, and therefore
the maximum number of eigen values, must be at least the number of poles or zeros in the frequency
range we are interested in.

If ni exceeds 10, products of Chebyshev polynomials that are used for building the matrices V
and W in �g 3.1 become high degree polinomials with large coe�cients that can lead to �oating
point over�ow.

The method used here for connecting three ducts together can also be used for connecting two.
Therefore, when a duct is too long for modelling high frequency sound �eld with n base functions, it is
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|H(s)|

|H̃(s)|

Figure 4.2 � modules of H(s) and H̃(s) computed for the acoustic graph in �g 2.1 with the number
of bases functions n1 = n2 = n3 = 10

split into several parts that are linked together by imposing pressure continuity and �ow conservation
at the junctions. The result obtained by splitting each duct into three parts is shown in �g 4.3. The
acoustic graph eventually contains 9 ducts and the V and W matrix size is 9 x 8 = 72.

|H(s)|

|H̃(s)|

Figure 4.3 � modules of H(s) and H̃(s) computed for the acoustic graph in �g 2.1 with the number
of bases functions ni = 8 ∀ i but each duct is split into 3 pieces.

4.5 Generalization

Zeros as decribed in sec 4.3 are generated by any induced connected subgraph of the acoustic
graph representation having the following properties :

• The subgraph does not contains any edge that is included in any IO path . An IO path is
a path that connects the input to the output.

• The subgraph contains one and only one disconnecting vertex vd that belongs to at least
one IO path

• If we remove all edges of the subgraph that include the disconnecting vertex vd, the
acoustic graph is split into two components.

We call such subgraph a disconnected subgraph whose examples are illustrated in �g 4.4. The area
functions corresponding the the graph edges used here are simple pipes with constant area cross
section.

The good matching between H(s) and H̃(s) illustrated by �gure 4.4 shows that the zeros have
correctly been identi�ed since there is no assumption on there origin in the computation of H(s).

4.6 Pole-zero pair at origin

When losses are are considered, and mainly when the �rst resonance frequency is low, if we look
closely at the frequencies just above zero, we observe a sharp but shallow damping on the transfer
function H that is not modelled by its pole-zero approximation H̃. An example is shown in �g 4.5.
Since it does not occur on lossless cases, lossy poles and zeros that would model this behaviour
cannot be deduced from the lossless case.

Since H(ν) has a pole like shape areound the frequency origin, we want to add a pole with

ferquency ν = 0 and a bandwidth Bp to the transfer function approximation H̃(ν). If we only add
a second order pole to the transfer function it will show a strong damping at high frequencies. The
range of the damping due to the pole can be limitted by adding a zero at frequency ν = 0 and a
bandwith Bz > Bp. We therefore consider the new approximation

H(s) ≃ (s− zo)(s− z∗o)

zoz∗o

pop
∗
o

(s− po)(s− p∗o)
H̃(s), (4.10)
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vd vd

(a)

|H(s)|

|H̃(s)|
(b)

Figure 4.4 � (a) Acoustic graph with two disconnected subgraphs (one in red, the other in
blue) responsible for zeros in the the transfer function from input (i) to output (o). (b) module of

corresponding H(s) and H̃(s)

|H̃(ν)|

|H(ν)|| (iν−
1
2Bz)

2

(iν− 1
2Bp)2

B2
p

B2
z
H̃(ν)|

Figure 4.5 � modules of H(ν) = H(s = 2iπν), H̃(ν) and its multiplication by an appropriated
pole-zero pair at ν = 0.

with s = iω = 2iπν, po = πBp and zo = πBz, it becomes

H(s = iω = 2iπν) ≃
(iν − 1

2Bz)
2

(iν − 1
2Bp)2

B2
p

B2
z

H̃(2iπν) (4.11)

If we take the norm of both side of the equation, we get√
1
16B

4
z + ν4 + 1

2B
2
zν

2√
1
16B

4
p + ν4 + 1

2B
2
pν

2

B2
p

B2
z

−Hs(ν) = 0, Hs(ν) =
|H(2iπν)|
|H̃(2iπν)|

(4.12)

Hence, if we compute |H(ν)| and |H̃(ν)| for 2 values of the frequency ν, equation 4.12 gives a system
of 2 equations with 2 unknowns : Bp and Bz. This can be solved numerically using a 2D Newton's
method. The 2D Newton search requires correct initial values of Bp and Bz. The �rst estimation of
Bp is obtained using a 2nd degree polynomial approximation around a pole at frequency νp

Hs(ν) ≃ p(ν) = aν2 + bν + c. (4.13)

a =
1

2
∂2
νHs(νp),

b = ∂νHs(νp)− 2aνp = −2aνp (νp is extremum),

c = Hs(νp)− aν2p − bνp.

By de�nition of the bandwidth around νp = 0, we have

Hs(νp ±
1

2
Bp) =

1√
2
Hs(νp)

νp=0
===⇒ Hs(

1

2
Bp) =

1√
2
Hs(0). (4.14)
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If νb is the lowest root of the 2nd degree polynomial

√
2p(ν)−Hs(0) = 0, (4.15)

the �rst estimation of Bp, and Bz for the 2D Newton search obtained from eq 4.12 are estimated
empirically from νb and the �rst resonance frequency.

We therefore need 5 computations of H using eq 4.5 :
• 3 for getting H(ν = 0) and its two �rst derivatives that give H0 in eq 4.6 and the �rst
estinamtion of Bp.

• 2 for building the system from eq 4.12 whose solution are the bandwidths of po and zo in eq
4.10.

From now, H̃ designs the transfer function approximation that includes such pole-zero pair when
they are found.

4.7 Cycle zeros

Occurence of cycles int the graph can also lead to zeros in the transfer function. The acoustic
graphs used to highlight this behavior are illustrated by �g 4.6 representing 4 acoustic graphs with
the same edges and vertices. The 3 �rsts only di�er by the length of the pipe α = 2. The 4th one
di�ers from the 3rd one by the input (α = 1) and output (α = 5) pipe lenghts. The edges of the
graph represent uniform pipes de�ned by their cross section Aα and their length Lα. Note that the
area cross section of the pipes included in the cycle (α = 2, 3 or 4) is half of the pipes that include
input (α = 1) and output (α = 5) so that A1(L1) = A2(0) +A3(0) = A2(L2) +A4(L4) = A5(0).

α = 1 α = 2 α = 5

α = 3 α = 4

Closed Input

(A1(0) = 0)

(a)

α 1 2 3 4 5

Lα(cm) 4 8 4 4 5

Lα(cm) 4 8.2 4 4 5

Lα(cm) 4 9 4 4 5

Lα(cm) 1 9 4 4 1

Aα(cm
2) 2 1 1 1 2

H(s) H(s)− 30db H(s)− 60db H(s)− 90db

(b)

Figure 4.6 � (a) Acoustic graph with one cycle responsible for zeros in the the transfer function

from input (i) to output (o). (b) corresponding H(s) and H̃(s) for the 4 con�gurations in the table
in �g (a).

We can see in �g 4.6 that when L2 = L3 + L4 = 8, the corresponding transfer function H(s) is
the same that for a uniform pipe with closed input and of length 17 cm with an area cross section
of 2 cm2 where poles are around 500, 1500, 2500.... Once L2 di�ers a little from L3 + L4 pole-zero
pairs occur in the transfer function as can be seen on H(s) corresponding to L2 = 8.2. If the length
di�erence increases as on the curve H(s) corresponding to L2 = 9, poles and zeros from a pair move
away from each other and new pole-zero pairs occur. For the last curve H(s) for which we have
shortened the pipes connected to the input and output, we see that the poles have changed from
H(s) but not the zero. The zeros depend only on the area functions corresponding to the edges

include in the cycle .
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We have analized the solutions as described in section 3.8 for a lossless tract at zero frequencies
detected graphically. In such cases, we observed that the impedance at the end of the pipe α = 1
is allso independent of the input pipe length but vary in a non-linear and non-mononic way with
regard to the frequency and we were unable to �nd a boundary condition such as eq 4.7 in order to
identify the zero values as eigenvalues of a linear system.

We therefore implemented a numerical search for �nding such zeros. First of all, in order to
reduce computation time, we build a new acoustic graph that includes all the cycle edges and
vertices. Then we add a small pipe at both input and output of the cycle . We can see in �g 4.7 (a)

that the module of the corresponding transfer function ˆ̄H(s) shape is not appropriated for a Newton
search. Since we can compute the poles of the transfer function with the eigenvalue method, we can
cancel these poles by multiplying the transfer function by a function that has zeros for each of them
and we de�ne

ˆ̄Hp(s) =
ˆ̄H(s)

np∏
k=1

(s− ˆ̄pk)(s− ˆ̄p∗k)

ˆ̄pk ˆ̄p∗k
, (4.16)

where ˆ̄H(s) is the transfer function of the lossless graph containing only the cycle and two small
pipes added at its input and output and the ˆ̄pk's are the poles of this acoustic graph. We can see

in �g 4.7 (a) that the module of ˆ̄Hp(s) has now only zeros and has phase shifts only at the zero

frequencies. We extracted the zero by implementing a dichotomic search on phase shifts of ˆ̄Hp(s).

Computation of all zeros in �g 4.7 with a precision of 10−3 Hz required 272 computation of ˆ̄H(s)
using eq 4.5.

| ˆ̄H(s)|

| ˆ̄Hp(s)|

10(arg( ˆ̄Hp(s))− π
2 )

(a)

|H(s)|

|H̃(s)|

(b)

Figure 4.7 � (a) Illustration of the computation of the zeros from the 3rd acoustic graph in �g 4.6
were only the cycle has been kept and small pipes have been added at input and output sides. (b)
Resulting transfer functions for the entire 3rd graph .

The result obtained by computing the poles of the entire graph, and taking losses into account
by solving eq 1.9 for both the poles and the zeros obtained by the phase shift search is shown in �g
4.7 (b) where a good matching between the pole and zero bandwidths is again observed.

4.8 Wide band cycle zeros

Now, we connect a pipe opened at both ends with a length of 8.5 cm and a constant area cross
section of 2 cm2 at the intersection of the pipes α = 3 and α = 4 of the last acoustic graph (L2 = 9)
represented in �g 4.6 (a). If we apply the method used to obtain the �g 4.7 (b), the resulting transfer

function H̃wb(s) in �g 4.8 (a) exhibits wide band poles the are not present in H(s). As we cancelled
the poles in eq 4.16, we now cancel the null bandwidth zeros by de�ning

ˆ̄Hzp(s) =
ˆ̄Hp(s)

nz∏
l=1

ˆ̄zl ˆ̄z
∗
l

(s− ˆ̄zl)(s− ˆ̄z∗l )
, (4.17)

where the ˆ̄zl are the zeros obtained by the phase shift search method.
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The residual function ˆ̄Hzp(s) contains only the wide band zeros whose frequencies can easily be
extracted by a Newton search on its derivative. The starting values for the search are extracted
from the transfer function value set stored while computing the phase shift search. Computation
of the zeros by phase shift search of H̃wb(s) in �g 4.8 (a) required 327 computation of H(s) and
computation of the 4 wide band zeros required only 29 more computations.

|H(s)|

|H̃wb(s)|ˆ̄Hzp(s)

(a)

|H(s)|

|H̃(s)|
(b)

Figure 4.8 � (a) Illustration of the computation of the wide band zeros from the acoustic graph

in �g 4.6 with and added pipe at the intersection of pipes α = 3 and α = 4. (b) Resulting transfer
functions.

Since the Newton search on the derivative of ˆ̄Hzp(s) also requires computation of its second
derivative, we evaluate the bandwith by approximating the transfer function around a given wide
band zero at frequency νz with a 2nd order polynomyal

| ˆ̄Hzp(ν)| = | ˆ̄Hzp(s = i2πν)| ≃ p(ν) = aν2 + bν + c (4.18)

a =
1

2
∂2
ν | ˆ̄Hzp(ν)|

∣∣∣
ν=νz

,

b = ∂ν | ˆ̄Hzp(ν)|
∣∣∣
ν=νz

− 2aνz = −2aνz,

c = | ˆ̄Hzp(νz)| − aν2z − bνz,

We must also note that the imaginary part of the residual function ˆ̄Hzp(s) is always 0. If we

add one 2nd order wide band zero to the transfer function H̃wb(s), it will exhibit a phase transition
arround the zero frequency that does not match the observed constant phase behavior. Instead, we
can add two second order zeros, the second one having a negative real part. i.e :

(iω − (σz + iωz))(iω − (σz − iωz))(iω − (−σz + iωz))(iω − (−σz − iωz))

(σz + iωz)(σz − iωz)(−σz + iωz)(−σz − iωz)

=
((ω − ωz)

2 + σ2
z)((ω + ωz)

2 + σ2
z)

(ω2
z + σ2

z)
2

, (4.19)

that is a real function and therefore matches our requirement.

Since the bandwith Bz of a single 2
nd order zero at frequency νz is de�ned by | ˆ̄Hzp(νz ± 1

2Bz)| =√
2 | ˆ̄Hzp(νz)|, when two such zeros are located at the same frequency, we must have | ˆ̄Hzp(νz± 1

2Bz)| =
2 | ˆ̄Hzp(νz)|. We therefore search for the values of ν̃z such as p(ν̃z) = 2 | ˆ̄Hzp(νz)| which is equivalent
to searching the two roots of the 2nd degree equation

p(ν)− 2 | ˆ̄Hzp(νz)| = 0 , (4.20)

which is straightforward and the banwidth approximation is �naly given by

Bz = 2(νz − ν̃z) , σzl = πBz . (4.21)
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where ν̃z is the lowest of the two roots of eq 4.20. Adding two wide band zeros for each of such zero
found to H̃wb(s) �naly gives a good matching as can be seen in �g 4.8 (b).

We must here point out that when applying to a lossy acoustic graph , equation 1.9 must not
be used to transform the last wide band zeros. They must be inserted in H̃(s) as it is in order to
have the good matching with H(s). This remark also holds when poles of the lossless tract have a
bandwidth. This occurs if the real matrix W−1V has complex conjugate pairs of eigenvalues.

We can �nally generalize our method : any induced connected subgraph of the acoustic graph
found by the following method are casusing zeros as described in this section.

• Find all cycles in the graph .
• Gather cycles that have at least one edge in common.
• Keep resulting subgraphs that have at least one edge on an IO path

• Identify any vertex vdc that belong to only one such a subgraph and is connected to at
least one edge edc that does not belong neither to any IO path nor to any cycle.

• Find all vertices that can be joined by a path that starts with {vdc, edc} and adjoin all
edges and vertices contained in such path to the subgraph containing vdc.

An example with a graph containing two such subgraphs and resulting the transfer functions
H(s) and H̃(s) are shown in �g 4.9

vdc
edc

vdc

edc

(a)

|H(s)|

|H̃(s)|
(b)

Figure 4.9 � (a) Acoustic graph with two cycle subgraphs (one in red, the other in blue) respon-
sible for zeros in the the transfer function from input (i) to output (o). (b) module of corresponding

H(s) and H̃(s)

5 Experimental results

We have seen in sections 3.8 and 3.7 that we can compute the solutions of the Webster equation
and its eigenmodes for an assembly of interconnected acoustic ducts with variable area cross section.

In section 5.1, we will show that our method can be used for modelling sharp constriction though
the Webster equation is not appropriated when the area function strongly varies on short distance.

In section 5.2 we will see that the acoustic properties of a resonator connected to a uniform pipe
is properly modelled by connecting three ducts using the variational formulation as developed in
section 3.3

In section 5.3 we will show that the zeros resulting from cycles in the acoustic graph as predicted
in section 4.7 are con�rmed by experimental results.

In order to measure the transfer function for the three cases discussed here, we closed the input
of the devices with a thin plastic �lm stretched as a drum's hide on which we tapped with a �nger
as impulse source. A microphone is placed near the output in order to record the impulse response.

5.1 Sharp constriction

We have seen in section 1.1 that the Webster equation 1.1 holds if the pipe diameter is smaller
compared to its length and the area function A(x) varies little on distances in the same order of
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magnitude of the pipe width.
Yet, we want compute the resonances and anti-resonances of acoustic systems for which that

constraint does not hold like the one described by its area function in �g 5.1 (b). The area cross
section of the constriction is ≃ 0.2 cm2 compared to the ≃ 7 cm2 for the rest of the pipe. Its width
is 4mm.

Experimental device for testing cycle zeros can be build with simple PVC plumbing materials
as will be seen in section 5.3. We did not �nd such materials for building devices including sharp
constrictions. Hence, in this section and the following one, they were built using a 3D printer. The
Tinkercad design of the device and the corresponding area function are shown in �g 5.1 (a).

(a) (b)

Figure 5.1 � (a) Design of the device used to measure the transfer function of a duct with a sharp
constriction. (b) The corresponding area function

Since the output is not a plane ba�e and the plastic used in the 3D printer has not the same wall
properties as a vocal tract. We �rst adjust the output (section 1.3) and wall (section 1.2) parameters
by measuring the resonances of a simple pipe made with the same diameter and material. The
output radiation parameters have been set to a = −2.5 ; b = 12 and the Sondhi parameters to
ω0 = 200 rad/s ; a = 400 rad/s ; c1 = 50 rad/s.

If we compute the resonances corresponding to the area function in �g 5.1 using the method
described in section 3.2, we get nearly the same values as the ones obtained for a uniform tube. This
does not match the transfer function of such a duct (see grey curve on �g 5.2).

Since the method used in section 3.3 for connecting three ducts can also be used for connecting
two, we can also represent the area function in �g 5.1 (a) as 3 uniform pipes connected together by
imposing �ow conservation and pressure continuity at boundaries. This leads to the black curve in
�g 5.2 that get closer to the measured spectrum though the two �rst resonances are still too high.

The Webster and Sondhi equations are obtained by integrating the pressure and velocity �elds
across the area cross section of the duct. Since the velocity is actually 0 at wall boundaries, we
introduced a radius correction parameter that reduces the area cross section. If the area cross section
is A(x), we compute the transfer function H̃ ′(s) with the reduced area function A′(s) de�ned as :

H̃ ′(s) = H̃(s)|A(x)→A′(x) with A′(x) = π(

√
A(x)

π
− δr)2 (5.1)

This �naly leads to the orange curve in �g 5.2 with δr = 0.07 cm.

Figure 5.2 � Spectrum measured at the output of the device represented in �g 5.1 (a) (blue).
Module of the transfer function corresponding to the area function plotted in �g 5.1 (b) (grey).
Module of the transfer function computed by splitting the same area function into three uniform
pipes connected by imposing the pressure continuity and �ow conservation at boundaries (black).

Module of the transfer function computed for the three pipes with the modi�ed area function H̃ ′(s)
with δr = 0.07 cm (orange)
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5.2 Resonator

In this section, we will check that the method developed in section 3.3 properly describes the
acoustic of a pipe to which a resonator is connected. The experimental device is shown in �g 5.3
(a). Since the material is the same than in section 5.1, we used the same Sondhi parameters :
ω0 = 200 rad/s ; a = 400 rad/s ; c1 = 50 rad/s. The output parameters have be adapted to a pipe
with smaller area cross section to a = −2 ; b = 7.5.

The result is shown in �g 5.4 where the Fourier transform of the signal output is plotted in
blue. The grey curve is obtained by using the area function de�ned in equation 5.2, the black curve
is obtained by splitting A3(x) into two pipes connected as in section 5.1 and the orange curve is
obtained by reducing the area function using equation 5.1

A1(x) =

{
0 if x = 0
2.01 if 0 < x ≤ 8.5

A2(x) = 2.01 if 0 ≤ x ≤ 7.5 (5.2)

A3(x) =

 0.2 if 0 ≤ x < 1.1
5.3 if 1.1 ≤ x < 5.1
0 if x = 5.1

(a) (b)

Figure 5.3 � (a) Design of the device used to measure the transfer function of a uniform pipe to
which a resonator is connected. (b) The area function of the resonator de�ned by A3(x) in equation
5.2.

Figure 5.4 � Module of the transfer function H̃(s) of a 16cm long pipe with a cross section of
2.01cm2 to which is connected the resonator whose area function is plotted in (a) at x = 8.5 cm

5.3 Cycle zeros

Here we present an experiment in order to show that cycle zeros described in section 4.7 corres-
pond to a physical reality. The acoustic device is an assembly of plumbing PVC pipes. A photo of the
experimental device is shown in �g 5.5 (a). The acoustic graph used for modelling the experiment
is shown in �g 5.5 (b).
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(a) (b)

Figure 5.5 � (a) Experimental device made of pvc plumbing pipes. (b) The acoustic graph used to
model the device. Each edge represents a pvc pipe with an area cross section of 6.16 cm2 and whose
length is written beside.

As in sections 5.1 and 5.2 output radiation and reacting wall parameters are adjusted by mea-
suring the resonances of a uniform pipe. Sondhi parameters have been set to ω0 = 400 rad/s ; a =
400 rad/s ; c1 = 10 rad/s. Output radiation parameters have been set to a = −3.3 ; b = 12.

We can see in �g 5.6 that we have a good matching between the computed and measured curves
up to 2700Hz.

Measured spectrum at the device output.

|H̃(s)|

Figure 5.6 � Module of the transfer function H̃(s) compared with the Fourier transform of the
signal output.

6 Numerical schemes

We have seen at the end of sec 3.7 that the error on �ow conservation on a given graph vertex
remains signi�cant once a duct connected to the vertex exhibits strong variations. Moreover, we have
seen in sec 1.1 that the Webster equation holds when A(x) varies little on distances in the same
order of magnitude of the pipe width. This is not the case with area functions such as de�ned in �g
2.1 and used in sec 3.7.

We have seen in sec 4.4 that a duct could be splitted into several parts in order to reach a
good numerical precision while avoidind high degree polynomials. We also showed in sec 5.1 that,
though the Webster equation does not properly describe the sound �eld when a duct present a sharp
constriction, representing such a duct by three connected uniform pipes provide a good experimental
matching.

We can see in �g 3.6 that, if we split a spline into step fuction, error terms on �ow �eld, pressure
continuity and �ow conservation are reduced from several order of magnitude. Of course, this has
a numerical cost : Indeed, the size of the mactrices V and W increases from 24 using the original
spline area function to 124 for the modi�ed area function where we have imposed 0.5 cm for the
maximum length of individual uniform pipes.
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A(x)P (x)

ÃP (x)

A(x)P (x)

ÃP (x)

Figure 6.1 � Di�erence between computation using the original spline area function and its trans-
formation into a concatenation of small tubes.

We can see in �g 6.2 the di�erence between the transfer function computed with the original or
the discretized area functions.

|Hspline(s)|

|Hpipe(s)|

Figure 6.2 � Comparisond between transfer functions using left (blue) and right (red) area functions
in �g 6.1

We did not realize the experiment on this geometry but, given the result obtained in sec 5.1, we
think that the splitted area function should provide a better experimental matching.

7 Conclusions

The variational formulation of the webster equation allowed us to model the sound �eld in an
acoustic graph composed of inteconnected acoustic ducts with variable cross section.

In section 3.3, we showed that resonance modes could obtained directly from eigenvectors of
linear operators and that resonance frequencies was obtained from the corresponding eigenvalues.

In section 3.4, we showed that solutions of the Webster equation could be obtained for each value
of the frequency by solving a linear system.

In section 4.5, we �rst identi�ed at type of subgraphs responsible for zeros whose frequencies
could also be obtained from eigen values of linear operators build with the subgraph associated area
functions. In section 4.7, we showed that when cycles occur in the graph, the transfer function also
contains zeros that cannot be obtained from eigen values of linear operators. Nevertheless, using the
poles and zeros identi�ed previously, we developed an algorithm for computing them at moderate
numerical cost. Such zeros were observed experimentally as described in section 5.3.

In section 3.6, we showed that solutions of the Webster equation could be obtained with arbirary
precision for each duct associated with graph eges but we observed in section 3.7 that errors on �ow
�ow conservation remain signi�cant once some of the ducts connected to a junction present strong
area function variations.

Moreover, we have seen in section 5.1 that the Webster equation is not appropriated for modelling
a sharp constriction, but that the variational formulation could still be used by modelling it with a
concatenation of uniform pipes.

In section 6, we eventually propose a numerical scheme that allow us to model any type of acoustic
graph. This sould be valid in the low frequency range where the wavelenghts are large compared to
the dimension of the junction area that is not propperly modeled by our 1D formulation.
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In the experimental section 5, we veri�ed, that our calculations are in agreement with experi-
mental results for a pipe with sharp constriction, a resonator conected to a pipe and an acoustic
graph in which cycle zeros occur.

8 Acknowledgement

We wish to thank Geo�roy Le Grelle for manufacturing the experimental devices used in sections
5.1 and 5.2 that were also designed through his numerous advices.

References

[1] L Landau and E Lifchitz. Physique théorique, volume 6 : Mécanique des �uides. Edition MIR
Moscou, second edition, 1989.

[2] M M Sondhi. Model for wave propagation in a lossy vocal tract. J. Acoust. Soc. Amer.,
55 :1070�1075, 1974.

[3] P Jospa. Des paramètres formantiques au paro�l articulatoire. Actes du 12eme Congrès inter-

national des sciences phonétiques - Aix-en-Provence, 2 :378�381, 1991.

[4] P Jospa, A Soquet, and M Saerens. Variational formulation of the acoustico-articulatory link
and the inverse mapping by means of a neural network. Levels in speech communication., pages
103�113, 1995.

[5] R Weinstock. Calculus Of Variations. Dover, dover edition 1974 edition, 1952.

[6] R Van Praag. Variational formmlation of the sound �eld in branching non-uniform acoustic

ducts. Application to the vocal tract. PhD thesis, Université Libre de Bruxelles - ILVP, 1998.

[7] V Smirnov. Cours de Matématiques Supérieures, volume 4. Edition MIR Moscou, 1989 2d

edition, 1975.

[8] R Van Praag and P Jospa. Variational method applied to formant computation for a pharyngo-
buco-nasal tract. Proceeding ICPhS 95 Stockholm, 4 :456�459, 1995.

[9] P Jospa and R Van Praag. Sound �eld computation in a network of non-uniform ducts. appli-
cation to the vocal tract. Proceeding ICPhS 99 Stockholm, 14 :2141�2144, 1999.

[10] J.A Bondy and U.S.R Murty. Graph Theory With Applications. North-Holland, New York �

Amsterdam � Oxford, 5th edition, 1982.

[11] Alan V. Oppenheim and Ronald W. Schafer. Discrete Time Signal Processing. Prentice Hall,
third (2010) edition, 1989.

25


	Acoustic model
	One dimensional propagation in a lossless pipe
	The Sondhi model
	Boundary conditions

	Variational formulation
	Introduction
	One single duct
	Three ducts linked together

	Numerical method
	Introduction
	The Rayleigh-Ritz method for a lossless single duct
	Eigenmodes for a three ducts problem
	Solutions for each value of the frequency
	Acoustic graph
	Verification of solutions
	Eigenmodes for lossless tract
	Solutions for a multi branch lossy tract

	The transfer function
	Solving the non homogeneous system
	From poles and zeros of the lossless tract
	Getting the zero frequencies
	Numerical precision
	Generalization
	Pole-zero pair at origin
	Cycle zeros
	Wide band cycle zeros

	Experimental results
	Sharp constriction
	Resonator
	Cycle zeros

	Numerical schemes
	Conclusions
	Acknowledgement

		2023-08-30T09:56:36+0200
	Roland Van Praag (Signature)




