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Abstract

The sound field inside interconnected acoustic ducts with varying cross-section is
modelled with a variational formulation of the Webster equation. The Sondhi model is
used to take wall admitance and visto-thermal effects into account. The acoustic network
of interconnected ducts is represented by a graph where each edge represents a duct
described by a one-dimensional area function. We develop here numerical methods that
allow us to solve the Webster equation in Laplace transform domain and to compute
the transfer function between two given points of the acoustic graph. Resonances are
obtained as eigenvalues of a matrix build with the area functions of the entire graph.
Graph algorithms are used to identify subgraphs responsible for anti-resonances (zeros)
of the transfer function. First, subgraphs that can be disconnected from any path joining
input and output and that behave like Helmoltz resonators. Then we point out that
subgraphs that contains cycles are also responsible for zeros in the transfer function. The
first ones (disconnected) can, as the poles, be obtained by computing the eigenvalues of
a matrix build with the area functions of the subgraph. The second ones (cycle) require
more numerical analysis in order to be computed from the transfer function for being used
in discrete time signal processing. Afterwards, we present experimental measurements
that validate the results of our computations. We conclude by a discussion on the most
appropriated numerical schemes for modelling acoustic properties of ducts that contains
sharp constrictions. All numerical results presented here can be reproduced with Acwato
software that can be downloaded here.

Table of Contents

1 Acoustic model
1.1 One dimensional propagation in a lossless pipe . . . . ... ... . ... ... ....
1.2 The Sondhi model . . . . . . . . .. e
1.3 Boundary conditions . . . . . . ... L

2 Variational formulation
2.1 Introduction . . . . . . . . . . . e e e e e
2.2 Omesingleduct . . . . .. . . e
2.3 Three ducts linked together . . . . . . . . . ... L

EEBEE EEEN

3 Numerical method
3.1 Imtroduction . . . . . . . . . ..
3.2 The Rayleigh-Ritz method for a lossless single duct . . . . . . ... .. ... .. ...
3.3 Eigenmodes for a three ducts problem . . . . . . .. ... ... ..o L.
3.4 Solutions for each value of the frequency . . . . . .. . ... ... ... ...
3.5 Acoustic graph . . . . ...
3.6 Verification of solutions . . . . . . . . .. ...
3.7 Eigenmodes for lossless tract . . . . . . . ... Lo
3.8 Solutions for a multi branch lossy tract . . . . . . ... ... ... 0.

EEE@EESEE

4 The transfer function @3
4.1 Solving the non homogeneous system . . . . . . . . ... ... L L. @3
4.2 From poles and zeros of the lossless tract . . . . . . . ... ... ... ... ... @3
4.3 Getting the zero frequencies . . . . . . . . ... o Lo @4


https://acwato.com/apps/acwato/download.html

4.4 Numerical precision . . . . . . . . e e e e e e e e 14

4.5 Generalization . . . . ... L
4.6 Pole-zero pair at origin . . . . . . . ...
4.7 Cyclezeros . . . . . . e i
4.8 Wide band cycle zeros . . . . . . . oL I8
5 Experimental results
5.1 Sharp constriction . . . . . . . .. L 20
5.2 Resonator . . . . . . . . . e 22]
5.3 Cycle zeros . . . . . . o e e e 22]
6 Numerical schemes 23]
7 Conclusions 24]
8 Acknowledgement

1 Acoustic model

1.1 One dimensional propagation in a lossless pipe

It can be shown that the wave equation in a long and narrow pipe becomes one-dimensional and
takes the form of the following Webster equation

1 0 Op(x,t) 1 9%*p(x,t)
A(m)ax<A(“’) oz >_02 ot

=0, (1.1)

where A(z) and p(x,t) are the area cross section of the pipe and the pressure at a distance x from
the pipe input and c is the speed of sound. By narrow, we mean that its diameter is smaller than
its length. This result holds when A(x) varies little on distances in the same order of magnitude of
the pipe width. The relationship between pressure and velocity v is provided by the Euler equation
[, p 12]

— +(VV)v=—-, (1.2)
where p is the air density. Since we consider only small amplitude waves, the quadratic term in v
can been omitted. With the same one-dimensional approximation than for the Webster equation [1.1},
Euler equation [T.2] becomes
Ou(z,t)  A(x) Ip(z,t)
_|_
ot 0 Ox

with the volume velocity defined as u(z,t) = A(z)v(z,t).
If we work in the Laplace transform domain, the Webster equation [I.I]and the Euler equation [L.3

=0, (1.3)

become 5 op )
- (A(x)(,(fx’s)) - %A(@P(m,s), (1.4)
OP(x,s) ps B
B + A(ac)U(x’ s) =0. (1.5)

1.2 The Sondhi model

The model used here for adding visco-thermal and wall effects to the Webster equation has been
developed by Sondhi in order to decscribe the acoustic properties of the human vocal tract [2]. The
simplest way to analyze the vocal tract acoustic properties is to assume that :

(a) the wave motion in the vocal tract is planar and can be described by a one-dimensional
equation,
(b) the air viscosity and thermal conductivity are negligible,

(c) the vocal tract walls are non-reacting (i.e : the walls are assumed to be rigid).

The Sondhi model allows us to relax assumptions (b) and (c) while keeping the formal problem very
near to equation [I.4] that becomes

0 (A(x) oF (“)) =7 4 )P s) =0, (1.6)

oz ox c?



where )

o%(s) = s(s + B(s)), B(s)= m + (cr8)2.

where the parameters w, and a take into account the wall reaction and ¢; the visco-thermal
losses. These parameters have been determined from experimental data for the human vocal tract :

[N

(1.7)

wo = 4067 rad/sec, a = 1307 rad/sec and ¢y =4 rad/sec. (1.8)

Sondhi also shows (see section that, if @ is a given resonance frequency of the lossless rigid-
walled tract (8 = 0), the resonance frequency and bandwidth of the corresponding lossy reacting-
walled are obtained by solving

o? +@? = s* +5B(s) +@? = 0. (1.9)

This last result is very important since, as will be seen later, poles and zeros of the lossless rigid-
walled tract can be computed very efficiently and solving eq [I.9] provides us with the lossy reacting-
walled ones that are required for designing discrete time signal processing filters that can be used
for achieving real time articulatory speech synthesis. Moreover, since this result holds whatever the
parameters w,, a and ¢y are, it also enables to model acoustic systems with different visco-thermal
and wall effects.

1.3 Boundary conditions

We will here assume that the tract is terminated by a mass load at boundaries (x =0 or z = L).
The mass load condition is expressed as

P(z,s)

U(x,s)

=15, (1.10)

where 7 is a constant which depends on the boundary opening. Here, we consider that the output
radiation can be modeled by a vibrating piston set in a baffle. Keeping only the real term of lip

impedance, we posit
P

NG

where ¢ ~ 2.1 for an infinite plan baffle [3]. Afterwards, ¢ has been adjusted in order to better fit
experimental data on human lips radiation and is obtained by the relation [4]

q=a\A(z)+b, (1.12)
where first estimations have lead to a = —3.5¢m ™! and b = 35. Substituting m into m gives

; (1.11)

U(z,s) = V" piy ), (1.13)

and therefore, if either a = b =0 or A(z) = 0, we have
Ulz,s) =0, (1.14)

which corresponds to a closed end. Hence, the boundary condition [I.13] allows to implement both
open and closed end boundary condition and to go from one to the other in a continuous way.

2 Variational formulation

2.1 Introduction

Since the Webster Equation [I.6] with boundary conditions [I.13] or [[.14] has a Sturm-Liouville
form, it can be deduced from a variational principle [3, p 119-120]. Simple junction conditions will
allow us to connect several ducts together in order to compute the resonance frequencies and transfer
functions for a vocal tract model in which nasal and sinus cavities may be taken into account [6].



2.2 One single duct
First of all, for convenience, we make the following variable change :

xT

. 1 .
2= € [0,1], f(z) = f(2), Ouf(x) = Zazf(z). (2.1)
Henceforth, we will no longer overline the functions of z. Equations and become

10P(z,3) ps

(7 mU(z, s) =0, (2.2)
z,8 o%L?
% (A(z) apéz’ )> - Cf A(z)P(z,s) = 0. (2.3)
Let us now consider the following functional :
S[z, P(2),0.P(2)] = / " L(5 P(2), 0. P(2))dz + Go(P(20)) + Gr (P(1)). (2.4)

From now, we will write S[P(z)] instead of S|z, P(z),0.P(z)]. The functions P(z) which lead to
extrema of this functional verify the following differential system [7, p 240-251]

oL d oL
P  dz8(0.P) 0 (25)

oL dGy

_ = 2.
0(0.P) " 9P(zg) (26)
oL G,
a0.7) =t apey 27)
If we posit
1 2 L20'2 2

L(2,P.0:P) = 7A(2) |(0:P(2))" + =5~ P*(2) (2.8)

S represents the action integral, and £ represents the Lagrangian of the pressure field inside the duct.
Equation 2.5 with the Lagrangian 2.8 gives the wave equation[2.3] So, if Go(P(z)) = G1(P(z1)) =0,
extremals of the action [2.4] with the lagrangian [2.8|are solutions of the wave equation [2.3| with implicit
boundary conditions

[0:P(2)].— = [0:P(2)].=, = 0, (2.9)

which gives the closed input condition [I.14] but not the open output condition [I.13] Indedd, substi-
tuting the closed input condition [T.14] into Euler equation [2.2] gives

[0:P(z, )], = 0 Vs, (2.10)

whereas substituting the output condition yields
A1) [oP
AW [OPES) ) AP, s) = o. (2.11)
L 0z 1
Conditions and are derived from equations [2.6] and [2.7] by positing
1
S = / L(z, P,0.P)dz + q\/A(1)P?(1). (2.12)
0

The variational formulation presented here for a duct open at the output end (oral vowels), remains
available for a duct closed at both ends (voiced labial occlusive) without having to redefine the
functional. Indeed, if A(1) = 0 (duct closed at lips), the functional S (eq[2.12) automatically takes
the required form for a duct closed at both ends.



2.3 Three ducts linked together
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FiGURE 2.1 — Three ducts connected represented by their area functions

Now, we are going to formulate the problem when three ducts are connected [g]. First of all, we
will associate an area function to each duct and name it A,(z), a =1,2,3. (see fig[2.1).

Then we build the following action integral associated to each of the three area functions denoted
by «

1 , L20?
I, = / L—Aa(z) [(azPa(z)) + =2 —P2(2)| dz, (2.13)
0 o

where L, is the length of the duct «.
We now introduce simple physical junction conditions which are pressure continuity and flow conser-
vation expressed respectively as

Pi(1) = P2(0) = Py(0), (2.14)
_ A3(0) A3(0)

Ly L

Now, aiming to get a variational formulation of the wave equation [2:3] inside any duct, we built one
functional S, for each of the three tracts. Let

2o, P(1) 8. Py(0) + d.P3(0). (2.15)

[ A5(0 As(0 1

Si[Py; Py, P3) = I —2P(1) z(l)ang(owr z(g)ang(()), (2.16)
(A (1 As(0 1

So[Py; Py, Ps] = In+2P(0) 2(1)@131(1)*%@133(0)

LEPy(0) [2P1(1) — Pa(0)] + g/ Aa(DP2(), (2.17)

[ A1 (1) ~ A3(0)

8ZP2(0)_

Sg[Pg;Pl,PQ] = Ig+2P3(0) Ll 5‘ZP1(1) Lg
+EP3(0) [2P1 (1) — P5(0)] 4 g/ As(1)P5 (1), (2.18)

where £ is an arbitrary constant (# 0) and S;[Pi; Ps, P3] means that only the function P; may
vary inside the functional S;. The two other functions P, and P; are considered as fixed for this
functional. Considering the variational problem

B g, 9By s (2.19)

0P 0P 0Ps
and applying the differential system (equations and to each of the functional Sy, S3 and
S3, we obtain the required wave equation for each duct, the junction conditions and
the radiation conditions (lips and nostrils) for the duct & = 2 and o = 3 and the glottis condition
for the duct o = 1. We notice here that, for a given ¢, a term containing 0, P; cannot occur outside
the integral of the corresponding action S;. We see for example that the boundary term of action
S1 contains only terms in 0, P, and J,Ps; and, from the variational point of view, those derivatives
are constant for the action S;. We also notice that the flow conservation is imposed on S7 an so,
considering that this conservation is also obtained on Sy and S3, the pressure continuity is imposed
on those last two actions for each non-null value taken by &.



3 Numerical method

3.1 Introduction

In this section, we will only consider lossless and rigid walled ducts because, in the framework
of the Sondhi model, loss and wall effects can be treated afterwards. Indeed, resonance frequencies
and bandwidths of a lossy, reacting walled duct can be deduced from resonance frequencies of the
lossless, rigid walled corresponding duct by solving equation [I.9] For a lossless rigid walled tract, we
have wg = a = ¢; = 0 and thus 5 = 0 (see equations . Since s = iw, we have 02 = —w? and the
wave equation becomes

0. (Aa(2)0.Pa(2) + <

a(2)Pa(z) =0, (3.1)

for each duct « included in the problem. The complex equation (o2 instead of —w?) will be treated
in section [3.8] We will see that the variational formulation allows us to compute the resonance
frequencies first for one single duct and then for a multi duct system. After that we will check if the
numerical approximations of solutions verify the wave equation with required boundary conditions.

3.2 The Rayleigh-Ritz method for a lossless single duct

We assume here that the solution may be approximated by the development
z) = Z Cini(2), (3.2)
i=1

where n;(z) i = 1,..., n are n functions chosen in a convenient complete set of linearly independent
functions. Here we have chosen the n firsts Tchebychev polynomials. Substituting Lagrangian
into action [2:12] and replacing P by its development [3.2] gives

5 /O%A(Z) <;CW;(Z)> ;Cm}@)
_ch; (ZQ’W(@) Zcﬂb‘(z) dz (3.3)

+ g/ A(1) <Zcﬂ7i(2)> chﬁj(z) ;

where 7' (z) denotes .n(z). Then, the functional S becomes an ordinary quadratic function with
respect to the coefficients C;. Because we are looking for the extremals of this action, we ask

08

ac; =0 Vie[l, n]. (3.4)
Since,
ac, ZCJWJ Zézﬂb i and chng Z(sw% 77;, (3.5)
where T
0ij :{ 0 i)thze;w?;e, (3.6)
for each i = 1,...,n, we obtain

2

1 & ! N L
7 >.C /0 A(z) {m(Z)nj(Z) — Al } + gV A( Z Cini(1)n;(1) = 0. (3.7)
j=1
where A\ = w?. The resulting system is now written

i% — AW;)C; =0, (3.8)

j=1



where V;; and W;; are given by

Vo = | AGmE e+ ADU0) (39)
1
Wy = 5 [ AGmne)d (3.10)

The system [3.8| may be written on the following matrix form
(W=V —\1)C =0, (3.11)

1 denoting the identity matrix and C is the vector whose components are the C;. Such homogeneous
system has non-trivial solutions if and only if A is eigenvalue of the matrix W1V, The corresponding
eigenvector C' provides the resonance mode by substituting its components into equation

3.3 Eigenmodes for a three ducts problem

We will now consider the three functionals S;, S and S3 given by equations 2.16] 2.17] and .18
and pose, for each value of a € {1,2,3}

Nao+nea a—1
Po(z)= > Cmi(2), Na=> ni, (N =0), ig=i-N, (3.12)
i=Ng+1 i=1
Now, we ask
9S4 .
2, =0, Vi€[Ny+1, Ny+ng (3.13)

nq being the number of coordinate functions chosen for the duct o and N =) n,, the number of
coefficients C;.

For each value of «, eq [3.I3] represents n, equations with N unknowns. For a = 1, the last
equation respects the fact that P, and P5 are considered as fixed for the action S;. For o = 2, P,
and Ps fixed for S5 and so on. Equation [3.13] eventually becomes one system of N equations and N
unknowns

> (Vij = AWy)Cj =0, (3.14)

which may be written under the form
(W=V - 1)C = 0. (3.15)

As example, here we compute the coupling terms with duct o = 2 in action Sj :

A5(0 A5(0) (& o
—2Py(1) 2( )8ZP2(0)=_2% (ch”k1<1)> 2 Cimu(0)
2 2 k=1 j=ni1+1
(8%1 Yi=1,..., ny)
(3.16)
4500 ni4nso , ni+na A (0 ,
—22 ) Y G0 = Y 62 1, 0))
2 - j= 2
j=ni+1 Jj=ni+1 L !
AQ(O) 4

:>V;'j:—2

17 771'1(1)77]'2(0) Vie [1,’111], j e [n1—|—1,n1 -‘rﬂg].
2
The resulting matrices V and W are detailed in fig
The resonance frequencies are given by the eigenvalues of the matrix W'V The solutions P;,P,
and Pj5 are finally obtained by substituting the corresponding eigenvector coefficients into [3.12

3.4 Solutions for each value of the frequency

As will be shown in section [4.1] the tansfer function is given by the volume velocity at the output
Us(1,s) while having imposed unit volume velocity at the input Up(0,s) = 1. With this input
condition, we can compute the transfer function by computing the pressure field and the volume
velocity at the output for each value of the frequency.

The Euler equation with Uy(0, s) = 1 gives

A1(0)

T@Pl(o,s) = —psU1(0,s) = —ps. (3.17)
1



]_7 ................ , Ny, Ill—|—]_7 ............. y 1’11—‘y-1127 n1—|—n2+1, .........
=l A1 (2)[m;, (2)my, (2)]dz 2AE§°)%(1)TI}2 (0) 2A3( )ml(l)n}g (0)
2, (0);, (1) 2 [ Az (2) [y, (2)my, (2))dz — 28500, (0)n;, (0)
+261:,(0)n;, (1) —28mi,(0)n;,(0)
+2q~/ A2 (1)n;, (1)n;, (1
2A1(1)T]13(0)77;1<1) 2Az( )1713(0)77;2(0) L3 fo As(z 7713( )77;-3(z)]dz
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FIGURE 3.1 — Detail of matrices V and W

This condition is obtained using eq[2.7|by adding the term —2psP; (0, s) to the functional S; (eq[2.16).
In this case, the calculation in section gives instead of system [3.14

Z ij zg j = Gi7 (318)
j=1
where A = —02, ¢ is given by eq and
f 2psm(0) Vi=1, ..,
G = { 0 otherwise. (3.19)

This system is no longer homogeneous and has a solution for each value of A except for the eigen
values of W~1V, for which the matrix V — AW is no more invertible.

3.5 Acoustic graph

This method can now be extended to an arbitrary number of ducts interconnected by imposing
pressure continuity and flow conservation at each junction [9]. From now, we will used terms from
graph theory glossary such as edge, vertex, graph, subgraph, path whose definitions can be
found in graph theory book such as [10].

F1GURE 3.2 — Acoustic graph representation : each edge represents a duct whose geometry is
described by an area function. The arrows show the = direction of the area function.




3.6 Vertification of solutions

Now, we would like to check if the approximated solutions obtained by this method for a lossless
rigid-walled acoustic graph (A = w?) verify both the wave equation and its boundary conditions.
The lossy reacting-walled case will be discussed in section [3.8
This will be done with two types of area functions as illustrated by fig [2.1] :

e Cubic splines for continuous area functions.

e Step functions more appropriated for disontinued area functions.
Let a single duct be described by its area function A(z). We want here to check if the function P(z)
obtained by this method verifies equation [3.1} In order to do this we define the error on the solution
E,(s) by

JTTAR)P(2) + 1220 (A(2)0.P(2))]” d=

Ew(s) = 1
Jo (A(2)P(2))?dz

, (3.20)

where the term inside the integral on numerator is expected to be 0 if the Webster equation is verified,
whereas the denominator normalizes the error E,, to a relative value. For each duct extremity, we
have to check if the boundary conditions we imposed match the numerical solution we have obtained.
In the case of the solution of the non homogeneous system for a given value of the frequency,
the volume velocity at the input should be U;(z;,s) = 1, z; beeing the z coordinate at input (0 or
1). We therefore define the input error

Ei(s) =U(z;,s) — 1. (3.21)

If the vertex of the acoustic graph corresponding to the duct extremity is an opened end, we have
to check the impedance at the duct end. We define boundary error for open boundaries at the point
2o(00r 1) as the difference between the obtained impedence an the target impendance defined by

equation [T-10]
P(z0,8) P(z0,5)
U(zo,s) - Ztarget _ U(zo,s) — 78

| Ztarget| B |7 5]

If the considered boundary is closed at the point z. (A(z.) = 0 in eq|1.13)), the target impedance is
oo, we will use the inverse of impedance as error since in that case, it should be 0.

E,(s) =

(3.22)

Eo(s) = =——222 (3.23)

When a duct extremity has more than one duct connected, it is a junction vertex p; at z;,
we must check errors on pressure continuity and flow conservation. We define the error on pressure
continuity as
max(Pu(z;)) — min(Pu(z;))

max(Pa(z;)) ’

E,(s) = (3.24)

where max (P, (z;)) is the maximum of pressure computed at each duct extremity connected to the
considered vertex and min(P,(z;)) is the minimum of pressure at the same vertex.
We define the error on flow conservation as

> o ep, S9m(0) 252200, Py (2)
An(za
Yo epy |20 Pa(20)

Ey(s) = (3.25)

where sgn(a) = 1 if the duct is connected to the vertex from its start (z, = 0) and sgn(a) = —1
if it is connected from its end (z, = 1).

3.7 Eigenmodes for lossless tract

Here, we will check that the eigenmodes obtained by solving eq verify both the lossless
Webster equation [3.1] and boundary conditions. If we consider that the approximation obtained by
the variational method is corrupted only by small but fast oscillations around the exact solution, its
derivative will be stained by significant errors. So, F,,(s) being obtained by using second derivative
is considerable as can be seen in fig that shows the forth resonance mode in the duct o = 1 of
the acoustic graph described in fig
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FIGURE 3.3 — Comparison of the two terms of the Webster equation for an eigenmode at 2053.02H z
and corresponding errors.

Consequently, we will avoid derivating the obtained approximation by integrating the wave equa-
tion. Indeed, integration of equation between 0 and z € [0, 1] gives

A(2)0.P(z) + F(z) + C1 =0, (3.26)
where C is an integration constant and F'(z) is defined as

AL?
= CT

F(2) /O T A©P©)e. (3.27)

Now, we compute the integration constant Cy in order to minimize the left term of equation [3.26]
at least mean square all along the duct length and so, we minimize the quantity

Fyou(P) = /0 (A(2)0.P(2) + F(2) + C1)2 dz, (3.28)
by asking OFyoe(P)
80701 =0, (3.29)
which yields )
C, = —/0 (A(2)0,P(z) + F(2)) d=. (3.30)

And we can now compute the mass flow using integration less sensitive to small oscillations using
A(2)0.P(z) = —F(z) — C4, (3.31)
and therefore, using the Euler equation [2.2

—F(Z) - Cl

U(z,s) = 5L (3.32)
40 /‘_‘\\
O //ﬁv S
T sl s A@)0.P(2) o
0 L 10
o=1

F1GURE 3.4 — Comparison between volume velocities using derivative and using U(x) from eq [3.32

Now, we would like to check if the derivative computed by integration (eq|3.31)) represents a good
approximation of the exact wave function derivative. To do this, we integrate the wave equation a
second time. Integrating equation between 0 and z € [0, 1] leads to

/OZ A(£)0: P(£)dE + /O F(&)de +Ciz+ Ca =0, (3.33)
where C5 is a second integration constant. Integrating the first term of eq [3.33] by parts gives
PG - [ 0ca(©) P@as + [ PO+ izt o =0, (339
which, for z = 0 gives

Oy = —A(0)P(0). (3.35)

So we can check the accuracy of our solutions by comparing A(z)P(z) with

AP(z) = / T(3:A(0)) P(e)de / T P()de — Gz — G, (3.36)

10



If stepwise area functions are used to describe the acoustic graph geometry :
A(z) = A, Vzi<z<zi4 @ i=0,..,n, (3.37)

and if we want to apply the previous method to such functions, we have to use the delta Dirac
distribution in order to compute the second term in equation So

(A1 — Az_l)d(z — Zl) Zf Z =z,

0:A(2) = { 0 otherwise, (3.38)

where the Dirac delta function 6(z) is defined by

oo if z =0,
0(z) = { 0 otherwise, (3.39)

/ d(z)dz =1 and / (z—a)¥(z)dz=T(a) Ve>D0. (3.40)
That gives B
| @A) P@as= 3 (4i- A Pl (3.41)
i] zi<z

Therefore, we can now check the wave equatlon without using approximation derivatives, except
to obtain the first integration constant (see eq . We define F,,(s) the same way as F ( ) by

. fol 2)P(z) Zﬁ(z))de

Eyu(s) = fo VR (3.42)

The error definitions and [3.23] remain unchanged but U(z, s) is computed using|3.32|instead
of The error on pressure continuity is unchanged and error on flow conservation is computed by

substituting eq [3:31] in [3:25]

=3 o=1 ;v=2033.02 Hz ; B=3 9548
£ D} Alz) P(z) Ew=s65e02
:
= 17 Ec=3.73e-08 Ep=-614e.06
34 AP (2) | | Ef=-1.09¢-01
0 5 10
o=1

FIGURE 3.5 — Comparison between A(z)P(z) and AP(x)

Comparing figure and we see that the two curves much better match and E,, is highly
reduced. Here, we have used n; = ny = n3 = 8 and, if we either increase the number of base
functions or check a lower frequency mode, the two curves matching is even better. Errors on
boundary conditions (E., E, and Ey) also show a great improvements. Moreover, the output error
(E,) for the duct o = 2 decreases from —3.26 10~ to —9.23 10~°.

Nevertheless, the error on flow conservation remains significant. This occurs once one of the ducts
connected to the junction exhibits strong area function variations. We will see in section [6] that this
problem can be solved by modifying our numerical scheme.

3.8 Solutions for a multi branch lossy tract

If we want to compute the transfer function for each value of the frequency, we have to solve
eq where A and the Cj; coefficients are complex numbers. The technique used in section is
here developed in the complex case. When losses have to be taken into account, equation must
be replaced by equation . Now, because o2 is a complex number, equation has to be solved
in the complex domain with

A=—0>= )\ +i\ and P(z) = P.(2) +iP;(2). (3.43)

Consequently, equation [2.3]is split into real and imaginary parts given by

0, (A(2)0.Pr(2)) + A(z)i—2 (A Pr(z) = NPi(2)) =0, (3.44)
0, (A(2)0.P;(2)) + A(z)i—j (APi(2) + \iPr(2)) = 0. (3.45)
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That gives A(z)P(z) as functions of its derivatives

A(2)Pr(2) = m {Ar0:(A(2)0: P (2)) + Xi0:(A(2)0. Pi(2))} (3.46)
2
A(2)Py(z) = (M0 (A(2)0. Pi(2)) — M (A(2)0.Po(2))} (3.47)

L2(A\2 + \?)

The coefficients of the Chebyshev series expansion P(z) = 3, Cjn;(z) are now complex : C; =
Ci+1i C; Real and imaginary parts of solutions are given by

2) = Zcfﬁj(z) P Pi(2) = 3 Ciny(2). (3.48)

Integrating equations [3.44] and [3.45] gives us

where the subscripr (r,7) means that the equation actually represents two equations : one with the
subscript r and and other with the subscript ¢ with

z

Fo(2)=14 A PO — APy de (3.50)
Fiz)=L / T A©) IMPE) + APL(O)) e, (3.51)

C1, and C4; being two integration constants.
Minimizing discrepancies to equations [3.49] at least mean square gives

1
CW@:—A[M@@HMQHJ%M@MA (3.52)

Substituting equation into Euler equation gives

U(z,s)=— 5L (3.53)
Integrating equations [3.49] gives
Py (2 / 9 (A()) Pr iy (§)dE + / F.i)(§)d€ + Ci(riyz + Co(riy = 0, (3.54)
0
which, for z = 0 gives
and equation becomes
AP (r 7.) / 85 r %) dé- / (i) )df Cl(r ) C’2(7’ i)- (356)

All errors defined in section (Ew, E;, Eo, B2, El,, E2,4, E, and Ey) become complex numbers.

g’ g’ l\
Z g - 9 - —
= ) g
= :}I A(z)P;(x) | AP (I ) = :1 A(z)P;(x) | AP,,j(:I;I)
0 b 10 0 3 10
o=1 o=1

U(x)
2 o
LT
S
&

U(x)
(%] (=]
[ =R == = |
1 1 1
S
O

0 3 10 ] 3 10
o=1 o=1
=1 ;v=2033.02 Hz o=1 ;v=2030 Hz
Ew=(3.632-02 , 1.80e-02) Ew={(3.63e02 , 5.61=-02)
Ei=(1.79e-09 _ 0.00e+00) Ep=(6.15e-06 _ 7.64e-07) Ei=(3.52e-09 , 0.00e+00) Ep=(6.21e-06 , 5.27e-06)
Ef=(1.09-01 , 1.35e-01) Ef=(1.09e-01 , 1.11e-01)

FIGURE 3.6 — Solution in the duct o = 1 of the lossy acoustic graph in ﬁgat resonance frequency
2053.02H z (left) and away from it at 2030H z (right).
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The left side of figure [3.6] shows the solution for a lossy tract computed with the default Sondhi
parameteres obtained by solving equation [3.18] in the complex domain at resonance frequency
2053.02H z. The real part of each function is plotted in light colour. In that case, we see that
P(z, s) is nearly real wheras U(z, s) is nearly imaginary. As can be seen on the right side of fig
if we move away from the resonance, both real and imaginary parts of P(z,s) and U(z, s) become
significant.

4 The transfer function

4.1 Solving the non homogeneous system

The transfer function can be defined as the ratio, in the Laplace transform domain, of the volume
velocity at the output U,(s) = U(1,s) to the volume velocity at the input U;(s) = U(0, s)
Us(s)

Ui(s)’

H(s) = (4.1)

which is equivalent to the Laplace transform of the response at the output to a volume velocity
impulsion at the input at time ¢ = 0. Indeed, if

ul(0,6) = (1), (4.2)
then, from de Diract § definition
Ui(s) =U(0,s) = / S(t)e stdt = e =1, (4.3)
0

and so, in this case the transfer function is given by U, (s). Substituting the impulse response condi-
tion into Euler equation yields to the boundary condition

A

[ éz) 3ZP(Z)] = —psU(0,s) = —ps, (4.4)
z=0

that requires solving the non homogeneous system For each value of A (so for each s = iw),

we can compute the solutions of complex Webster equation [2.3] by computing the solutions of the

system [3.18] and substitute them into eq Equations and give

_ _AQ)
H(s) = UO(LS)__psLOaZPO(l’S)
- leos [(Fo(1,8) + C1) + i(Fi(1,8) + Cy)] - (4.5)

4.2 From poles and zeros of the lossless tract

The transfer function can also be expressed in terms of its poles and zeros :

ﬁ(S)ZHOﬁ (S_ pkpz ﬁ(372l)(872l*) 7 (46)
k=1

(s —pp) L2

where the p, are the n, first poles and z; the n, first zeros of the acoustic system. Zeros occur
when subsidiary tracts are connected to the main tract by imposing pressure continuity and flow
conservation at tract connections (see section .

Thanks to the Sondhi model, once we have computed the poles and zeros of the lossless rigid-
walled acoustic system, we can compute the corresponding poles and zeros of the lossy reacting-walled
one by solving equation [1.9

s2 + sB(s) +w? = 0.
Using the newton method for finding the zeros of a non linear function and taking s = i@ as starting
point for the Newton algorithm provides solutions in few iterations. Moreover, since our main goal
is to achieve real time articulatory speech synthesis, poles and zeros are all what is required to
implement discrete time signal processing filters as described in [I1l p. 296].

Hence, we first compute the poles and zeros of the lossless acoustic graph (&). Then we solve
equation to obtain the corresponding lossy ones and substitute the resulting py and zx; into
eq The constant Hy = H(0) needed to compute the transfer function this way is obtained by
the previous method but this time, we have only to solve the system [3.18 once instead of solving it
for each frequency value. After that, computation of H(s) is much more faster using equation
As seen in section the resonance frequencies of the lossless acoustic graph are given by the
eigenvalues of the matrix W1V
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4.3 Getting the zero frequencies

As can be seen on the orange curve in fig obtained with the acoustic graph from figure
once a tract (o = 3) is connected to the Input/Output path (o = 1, o = 2), the lossless transfer
function H (s), computed with eq but with wg = a = ¢; = 0, has not only poles but also
zeros. In such a case, the non homogeneous solutions (section with A\; = 0) at the frequencies
corresponding to the zeros, have Ps(z,s) = Us(z,s) = 0 Vz in the output duct (o = 2). Therefore,
the pressure continuity at junction requires Pi(1,s) = P5(0,s) = P»(0,s) = 0. We therefore identify
the zero of the transfer function to the poles of the duct @ = 3 where a null pressure is imposed at
the input. The output boundary condition does not allows to impose P = 0 but we can impose
a disconnection impedance Z,; as small as we want but not zero by adding the term (PZ(0,s), ¢
beeing a large number, to the functional S3 in equation [2.1§ where connection terms have been
removed. This yields by eq[2.6] to the boundary condition

A3(0)

Tsc?ng(O, S) + CPg(O, S) S —pSUg(O, 8) + CP;;(O, 8) = 0, (47)

and hence the disconnection impedance is given by,

-3

We also define the error on disconnection impendance the same way we defined the error on output
impedance in eq [3:22] with

GBS -z _ By -¢
Eq(s) = = 7 : TR (4.9)

In the example used here, we have set ( = 10°. The algorithm used to compute the fast transfer

30

=]
1

H (dB)

-304

|H(s)] \H (s)|

-60

T T T T 1
0 2000 4000 6000 8000 10000
v (Hz)

FIGURE 4.1 — modules of fI(s), H(s)| and H(s) computed for the acoustic graph in fig with
the number of bases functions ny = ny = ng =8

function H(s) using E is eventually :
e Compute the poles of the lossless tract by calculating the eigenvalues of the matrix W~=1V.
e Build the V3 and W3 matrices for the subtract a = 3 with boundary condition and
compute the eigen values of the matrix W, 'V that are identified to the lossless zeros.
e Compute the lossy poles and zeros by solving eq[I.9] for each pole and zero found previously.
e Substitute the resulting py’s and z;’s into equation
Comparing the resulting transfer functions H(s) and H(s) in figure we see that both poles, zeros
and bandwith are correct but H (s) shows a strong damping at high frequencies.

4.4 Numerical precision

We can see in fig where the number of bases functions has been increased to 10 that the
damping is reduced, high frequecies poles and zero are moved and new ones occur. This is normal
since, for a high frequency solution, the highest degree base function must have at least as much
oscillation that the sound field for that frequency. Moreover, the size of the matrices, and therefore
the maximum number of eigen values, must be at least the number of poles or zeros in the frequency
range we are interested in.

If n; exceeds 10, products of Chebyshev polynomials that are used for building the matrices V'
and W in fig [3.1] become high degree polinomials with large coefficients that can lead to floating
point overflow.

The method used here for connecting three ducts together can also be used for connecting two.
Therefore, when a duct is too long for modelling high frequency sound field with n base functions, it is
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1
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1

H (dB}

Tl He)

-60

T T T T 1
0 2000 4000 6000 8000 10000
v (Hz)

FIGURE 4.2 — modules of H (s) and H (s) computed for the acoustic graph in ﬁgwith the number
of bases functions n; = ny = n3 = 10

split into several parts that are linked together by imposing pressure continuity and flow conservation
at the junctions. The result obtained by splitting each duct into three parts is shown in fig [£.3] The
acoustic graph eventually contains 9 ducts and the V and W matrix size is 9 x 8 = 72.

30

[H(s)|

=]
1

H (dB}

o | (s)]

-60

T T T T 1
0 2000 4000 6000 8000 10000
v (Hz)

FIGURE 4.3 — modules of H(s) and H(s) computed for the acoustic graph in ﬁgwith the number
of bases functions n; = 8 V ¢ but each duct is split into 3 pieces.

4.5 Generalization

Zeros as decribed in sec [4.3] are generated by any induced connected subgraph of the acoustic
graph representation having the following properties :
e The subgraph does not contains any edge that is included in any 10 path. An 10 path is
a path that connects the input to the output.
o The subgraph contains one and only one disconnecting vertex vq that belongs to at least
one 10 path
e If we remove all edges of the subgraph that include the disconnecting wvertex vg, the
acoustic graph is split into two components.

We call such subgraph a disconnected subgraph whose examples are illustrated in fig[{.4] The area
functions corresponding the the graph edges used here are simple pipes with constant area cross
section. _

The good matching between H(s) and H(s) illustrated by figure shows that the zeros have
correctly been identified since there is no assumption on there origin in the computation of H(s).

4.6 Pole-zero pair at origin

When losses are are considered, and mainly when the first resonance frequency is low, if we look
closely at the frequencies just above zero, we observe a sharp but shallow damping on the transfer
function H that is not modelled by its pole-zero approximation H. An example is shown in fig
Since it does not occur on lossless cases, lossy poles and zeros that would model this behaviour
cannot be deduced from the lossless case.

Since H(v) has a pole like shape areound the frequency origin, we want to add a pole with
ferquency v = 0 and a bandwidth B, to the transfer function approximation H(v). If we only add
a second order pole to the transfer function it will show a strong damping at high frequencies. The
range of the damping due to the pole can be limitted by adding a zero at frequency v = 0 and a
bandwith B, > B,. We therefore consider the new approximation

N CEE (O N A
H(s) ~ = 5= po)(s = pz)H( ), (4.10)
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FIGURE 4.4 — (a) Acoustic graph with two disconnected subgraphs (one in red, the other in
blue) responsible for zeros in the the transfer function from input (i) to output (o). (b) module of
corresponding H (s) and H (s)

159

10—

[H (dB)

FIGURE 4.5 — modules of H(v) = H(s = 2imv), H(v) and its multiplication by an appropriated
pole-zero pair at v = 0.

with s = iw = 2inv, p, = 7B, and 2z, = 75,, it becomes

. . (iV ;BZ)Q B2 .
H _ =92 ~ 277 P (%rn A1
(s =iw imy) ~ (v ; B2 (2imv) (4.11)

If we take the norm of both side of the equation, we get

LB? —|—Z/4 + lB?VQ 32 H(2i
1 2 =5 — H,(v) =0, H(v) = M (4.12)
=B+ vt 1B22 P2 |H (2imv)|

Hence, if we compute |H (v)| and |H (v)| for 2 values of the frequency v, equation Mgives a system
of 2 equations with 2 unknowns : B, and B,. This can be solved numerically using a 2D Newton’s
method. The 2D Newton search requires correct initial values of B, and B,. The first estimation of
B, is obtained using a 274 degree polynomial approximation around a pole at frequency Vp

H,(v) ~ pv)=ar?+bv+ec (4.13)
1
a = ial%Hs(up),
b = 0,Hs(vp) — 2avp, = —2av, (vp is extremum),
¢ = Hs(vp)— al/g — bup.

By definition of the bandwidth around v, = 0, we have
1 vp=0 1
—

25 Hwy) HL(0). (4.14)

1
HS(Vp + §Bp) =
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If vy is the lowest root of the 2d degree polynomial
V2p(v) — H,(0) =0, (4.15)

the first estimation of By, and B, for the 2D Newton search obtained from eq are estimated
empirically from v}, and the first resonance frequency.

We therefore need 5 computations of H using eq [4.5]:
e 3 for getting H(v = 0) and its two first derivatives that give Hp in eq and the first
estinamtion of B,,.
e 2 for building the system from eq whose solution are the bandwidths of p, and z, in eq
4, 101

From now, H designs the transfer function approximation that includes such pole-zero pair when
they are found.

4.7 Cycle zeros

Occurence of eycles int the graph can also lead to zeros in the transfer function. The acoustic
graphs used to highlight this behavior are illustrated by fig[4.6] representing 4 acoustic graphs with
the same edges and vertices. The 3 firsts only differ by the length of the pipe a = 2. The 4" one
differs from the 3"¢ one by the input (o = 1) and output (o = 5) pipe lenghts. The edges of the
graph represent uniform pipes defined by their cross section A, and their length L. Note that the
area cross section of the pipes included in the cycle (aw = 2, 3 or 4) is half of the pipes that include
input (o = 1) and output (o = 5) so that A;(L;) = A2(0) + A3(0) = Az(L2) + As(Ls) = A5(0).

a=3 a=4
@ &
1 a=1 a=2 a=>5
o 1 3[4[5
(a) Lo(em) | 4 414 |5
Lo(em) | 41821445
losed Input
La(em) | 4| 9 |4]a|p| Closedlnpu
Lo(em) |11 9 |4]4]1 (A1(0) =0)
Aglem?) |2 1 | 1]1]2
407 H(s) H(s) — 30db H(s)—60db  H(s)—90db
o] MAAANANAAAANAAAAAAAAN
2 MM]UUUUUUUUUU\/\N\/W\
o
b
(b) 0.
-1204
EIJ EOIOO lO[IJOO 15600 20006

v (Hz)

FIGURE 4.6 — (a) Acoustic graph with one cycle responsible for zeros in the the transfer function
from input (i) to output (0). (b) corresponding H(s) and H(s) for the 4 configurations in the table
in fig (a).

We can see in fig that when L, = L3 + Ly = 8, the corresponding transfer function H(s) is
the same that for a uniform pipe with closed input and of length 17 ¢m with an area cross section
of 2 em? where poles are around 500, 1500, 2500.... Once Ly differs a little from Lz + L4 pole-zero
pairs occur in the transfer function as can be seen on H (s) corresponding to Lo = 8.2. If the length
difference increases as on the curve H(s) corresponding to Ly = 9, poles and zeros from a pair move
away from each other and new pole-zero pairs occur. For the last curve H(s) for which we have
shortened the pipes connected to the input and output, we see that the poles have changed from
H(s) but not the zero. The zeros depend only on the area functions corresponding to the edges
include in the cycle.
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We have analized the solutions as described in section [3.8|for a lossless tract at zero frequencies
detected graphically. In such cases, we observed that the impedance at the end of the pipe a = 1
is allso independent of the input pipe length but vary in a non-linear and non-mononic way with
regard to the frequency and we were unable to find a boundary condition such as eq[4.7)in order to
identify the zero values as eigenvalues of a linear system.

We therefore implemented a numerical search for finding such zeros. First of all, in order to
reduce computation time, we build a new acoustic graph that includes all the cycle edges and
vertices. Then we add a small pipe at both input and output of the cycle. We can see in ﬁg (a)

that the module of the corresponding transfer function H (s) shape is not appropriated for a Newton
search. Since we can compute the poles of the transfer function with the eigenvalue method, we can
cancel these poles by multiplying the transfer function by a function that has zeros for each of them
and we define

Hy(s) = H(s) 1 (=p)(s—pi). (4.16)

(
1 DPEPy

where H (s) is the transfer function of the lossless graph containing only the cycle and two small
pipes added at its input and output and the py’s are the poles of this acoustic graph. We can see
in figd ) that the module of H »(s) has now only zeros and has phase shifts only at the Z€ero
frequen(nes We extracted the zero by implementing a dichotomic search on phase shifts of i ( ).

Computation of all zeros in fig 4.7| with a precision of 1073 Hz required 272 computation of bis (s)

using eq [.5]

| (s)| A
[, (s)|

=
H (dB)
<
<
-
an
=

T 1
0 5000 10000 15000 20000

H (dB}

T T 1
0 5000 10000 15000 20000
v (Hz)

FIGURE 4.7 — (a) Illustration of the computation of the zeros from the 3" acoustic graph in fig
were only the cycle has been kept and small pipes have been added at input and output sides. (b)
Resulting transfer functions for the entire 3"¢ graph.

The result obtained by computing the poles of the entire graph, and taking losses into account
by solving eq for both the poles and the zeros obtained by the phase shift search is shown in fig
(b) where a good matching between the pole and zero bandwidths is again observed.

4.8 Wide band cycle zeros

Now, we connect a pipe opened at both ends with a length of 8.5 ¢m and a constant area cross
section of 2 cm? at the intersection of the pipes a = 3 and « = 4 of the last acoustic graph (Ls = 9)
represented in ﬁg (a). If we apply the method used to obtain the ﬁg (b), the resulting transfer
function Hyy(s) in fig (a) exhibits wide band poles the are not present in H(s). As we cancelled
the poles in eq .16] we now cancel the null bandwidth zeros by defining

Nz

Fopls) = Hys) [ 2 (117)

oy (5= 2)(s = 2)

where the Z; are the zeros obtained by the phase shift search method.
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The residual function /., (s) contains only the wide band zeros whose frequencies can easily be
extracted by a Newton search on its derivative. The starting values for the search are extracted
from the transfer function value set stored Whlle com utlng the phase shift search. Computation
of the zeros by phase shift search of Hwb in fig 4.8 (a) required 327 computation of H(s) and
computation of the 4 wide band zeros requlred only 29 more computations.

H (dB)

T T T 1
4000 8000 12000 16000 20000

0
v (Hz)
90
60 [H (s)|
Z 30
= o0
by = v
[H(s)|
-60
6 40‘00 SUIDO 12600 16600 IOUDlI]
v (Hz)

FIGURE 4.8 — (a) Illustration of the computation of the wide band zeros from the acoustic graph
in fig with and added pipe at the intersection of pipes @ = 3 and a = 4. (b) Resulting transfer
functions.

Since the Newton search on the derivative of f[zp(s) also requires computation of its second
derivative, we evaluate the bandwith by approximating the transfer function around a given wide
band zero at frequency v, with a 2"¢ order polynomyal

\H.,(v)| = |H.p(s = 27v)| ~ p(v)=av®+bv+ec (4.18)
1 ~
a = 5 ag‘Hzp(V” s s
b = 8,,|ﬁ[zp(1/)| — 2av, = —2av,,
c = |I§zp(uz)| —auj — b,

We must also note that the imaginary part of the residual function /7.,(s) is always 0. If we
add one 2"¢ order wide band zero to the transfer function f]wb(s), it will exhibit a phase transition
arround the zero frequency that does not match the observed constant phase behavior. Instead, we
can add two second order zeros, the second one having a negative real part. i.e :

(iw — (0, +iw,)) (iw — (0, — iw,))(iw — (=0, + w,)) (iw — (-0, — iw;))
(0 + iwy) (0, —iw,)(—0, + iw,) (—0, — iw,)
_ (w—w) J(rwgi(g; w)* +03) (4.19)

that is a real function and therefore matches our requirement.
Since the bandwith B, of a single 2"? order zero at frequency v, is defined by |Hzp(yz +1B.)| =

V2 |Hzp(uz)| when two such zeros are located at the same frequency, we must have |HZP(VZ:|: B,)| =

2 |Hzp(1/z)|. We therefore search for the values of ©, such as p(7,) = 2 |Hzp(uz)| which is equivalent
to searching the two roots of the 2"¢ degree equation

p(y) -2 |Hzp(l/z)| =0, (420)
which is straightforward and the banwidth approximation is finaly given by

B, =2v,—1,), 0, =78, . (4.21)
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where 77, is the lowest of the two roots of eq[£.20} Adding two wide band zeros for each of such zero
found to H,;(s) finaly gives a good matching as can be seen in fig (b).

We must here point out that when applying to a lossy acoustic graph, equation must not
be used to transform the last wide band zeros. They must be inserted in H(s) as it is in order to
have the good matching with H(s). This remark also holds when poles of the lossless tract have a
bandwidth. This occurs if the real matrix W'V has complex conjugate pairs of eigenvalues.

We can finally generalize our method : any tnduced connected subgraph of the acoustic graph
found by the following method are casusing zeros as described in this section.

e Find all cycles in the graph.

e Gather cycles that have at least one edge in common.

e Keep resulting subgraphs that have at least one edge on an 10 path

o Identify any vertex vq. that belong to only one such a subgraph and is connected to at
least one edge eq. that does not belong neither to any 10 path nor to any cycle.

e Find all vertices that can be joined by a path that starts with {v4e, eqc} and adjoin all
edges and vertices contained in such path to the subgraph containing vgc.

An example with a graph containing two such subgraphs and resulting the transfer functions
H(s) and H(s) are shown in fig

Vdc

€dc

® L
1 o

€dc

Vdc

H (dB}

T T T T 1
0 2000 4000 6000 8000 10000
v (Hz)

FIGURE 4.9 — (a) Acoustic graph with two cycle subgraphs (one in red, the other in blue) respon-
sible for zeros in the the transfer function from input (i) to output (o). (b) module of corresponding
H(s) and H(s)

5 Experimental results

We have seen in sections [3.8] and [3:7] that we can compute the solutions of the Webster equation
and its eigenmodes for an assembly of interconnected acoustic ducts with variable area cross section.

In section [5.1] we will show that our method can be used for modelling sharp constriction though
the Webster equation is not appropriated when the area function strongly varies on short distance.

In section [5.2| we will see that the acoustic properties of a resonator connected to a uniform pipe
is properly modelled by connecting three ducts using the variational formulation as developed in
section

In section [5.3] we will show that the zeros resulting from cycles in the acoustic graph as predicted
in section [£.7] are confirmed by experimental results.

In order to measure the transfer function for the three cases discussed here, we closed the input
of the devices with a thin plastic film stretched as a drum’s hide on which we tapped with a finger
as impulse source. A microphone is placed near the output in order to record the impulse response.

5.1 Sharp constriction

We have seen in section [I.1] that the Webster equation [I.T] holds if the pipe diameter is smaller
compared to its length and the area function A(z) varies little on distances in the same order of
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magnitude of the pipe width.

Yet, we want compute the resonances and anti-resonances of acoustic systems for which that
constraint does not hold like the one described by its area function in fig (b). The area cross
section of the constriction is ~ 0.2 em? compared to the ~ 7cm? for the rest of the pipe. Its width
is 4mm.

Experimental device for testing cycle zeros can be build with simple PVC plumbing materials
as will be seen in section We did not find such materials for building devices including sharp
constrictions. Hence, in this section and the following one, they were built using a 3D printer. The
Tinkercad design of the device and the corresponding area function are shown in ﬁg (a).

Afx) (em?)

% (cm)

(b)

FIGURE 5.1 — (a) Design of the device used to measure the transfer function of a duct with a sharp
constriction. (b) The corresponding area function

Since the output is not a plane baffle and the plastic used in the 3D printer has not the same wall
properties as a vocal tract. We first adjust the output (section and wall (section parameters
by measuring the resonances of a simple pipe made with the same diameter and material. The
output radiation parameters have been set to a = —2.5; b = 12 and the Sondhi parameters to
wo = 200rad/s; a =400rad/s; ¢y = 50rad/s.

If we compute the resonances corresponding to the area function in fig using the method
described in section [3:2] we get nearly the same values as the ones obtained for a uniform tube. This
does not match the transfer function of such a duct (see grey curve on ﬁg.

Since the method used in section [3.3|for connecting three ducts can also be used for connecting
two, we can also represent the area function in ﬁg (a) as 3 uniform pipes connected together by
imposing flow conservation and pressure continuity at boundaries. This leads to the black curve in
fig[5.2) that get closer to the measured spectrum though the two first resonances are still too high.

The Webster and Sondhi equations are obtained by integrating the pressure and velocity fields
across the area cross section of the duct. Since the velocity is actually 0 at wall boundaries, we
introduced a radius correction parameter that reduces the area cross section. If the area cross section
is A(z), we compute the transfer function H'(s) with the reduced area function A’(s) defined as :

A(z)

™

— or)? (5.1)

H'(s) = H(8)| () ar(x) With A'(z) = 7(

This finaly leads to the orange curve in fig[5.2) with ér = 0.07 cm.

IH] (dR)

T T T T 1
0 1000 2000 3000 4000 5000
Frequency (Hz)

FIGURE 5.2 — Spectrum measured at the output of the device represented in fig (a) (blue).
Module of the transfer function corresponding to the area function plotted in fig (b) (grey).
Module of the transfer function computed by splitting the same area function into three uniform
pipes connected by imposing the pressure continuity and flow conservation at boundaries (black).
Module of the transfer function computed for the three pipes with the modified area function H’ (s)
with dr = 0.07 cm (orange)
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5.2 Resonator

In this section, we will check that the method developed in section properly describes the
acoustic of a pipe to which a resonator is connected. The experimental device is shown in fig
(a). Since the material is the same than in section we used the same Sondhi parameters :
wo = 200rad/s; a = 400rad/s; ¢c; = 50rad/s. The output parameters have be adapted to a pipe
with smaller area cross section to a = —2; b= 7.5.

The result is shown in fig where the Fourier transform of the signal output is plotted in
blue. The grey curve is obtained by using the area function defined in equation the black curve
is obtained by splitting As(z) into two pipes connected as in section and the orange curve is
obtained by reducing the area function using equation [5.1]

0 ifar=0
Ailr) = {zm if 0<a<85
As(zr) = 201 0<z<T5h (5.2)
0.2 if 0<z <1l

As(z) = 53 if 1.1 <z <5.1
0 ifx=51
10
g
i
4
2
D i T T " T T 1
0 2 4 6 8 10

(a) (b)

FIGURE 5.3 — (a) Design of the device used to measure the transfer function of a uniform pipe to
which a resonator is connected. (b) The area function of the resonator defined by As(z) in equation

B2

407

H| (dR)

-40

T T T T 1
0 1000 2000 3000 4000 5000
Frequency (Hz)

FIGURE 5.4 — Module of the transfer function f[(s) of a 16cm long pipe with a cross section of
2.01em? to which is connected the resonator whose area function is plotted in (a) at z = 8.5cm

5.3 Cycle zeros

Here we present an experiment in order to show that cycle zeros described in section [4.7] corres-
pond to a physical reality. The acoustic device is an assembly of plumbing PVC pipes. A photo of the
experimental device is shown in fig (a). The acoustic graph used for modelling the experiment

is shown in fig [5.5] (b).
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8.0 cm 8.0 em

o

1 135 em 110 em 4.0 em

(b)

FIGURE 5.5 — (a) Experimental device made of pvc plumbing pipes. (b) The acoustic graph used to
model the device. Each edge represents a pve pipe with an area cross section of 6.16 cm? and whose
length is written beside.

As in sections [5.1] and [5.2] output radiation and reacting wall parameters are adjusted by mea-
suring the resonances of a uniform pipe. Sondhi parameters have been set to wy = 400rad/s; a =
400rad/s; ¢; = 10rad/s. Output radiation parameters have been set to a = —3.3; b = 12.

We can see in fig[5.6] that we have a good matching between the computed and measured curves
up to 2700 Hz.

607

304 Measured spectrum at the device output.

IH| (dR)

T T T T 1
0 1000 2000 3000 4000 5000
Frequency (Hz)

FIGURE 5.6 — Module of the transfer function H(s) compared with the Fourier transform of the
signal output.

6 Numerical schemes

We have seen at the end of sec that the error on flow conservation on a given graph vertex
remains significant once a duct connected to the vertex exhibits strong variations. Moreover, we have
seen in sec that the Webster equation holds when A(x) varies little on distances in the same
order of magnitude of the pipe width. This is not the case with area functions such as defined in fig
21l and used in sec

We have seen in sec [£4] that a duct could be splitted into several parts in order to reach a
good numerical precision while avoidind high degree polynomials. We also showed in sec [5.1] that,
though the Webster equation does not properly describe the sound field when a duct present a sharp
constriction, representing such a duct by three connected uniform pipes provide a good experimental
matching.

We can see in fig 3.6 that, if we split a spline into step fuction, error terms on flow field, pressure
continuity and flow conservation are reduced from several order of magnitude. Of course, this has
a numerical cost : Indeed, the size of the mactrices V' and W increases from 24 using the original
spline area function to 124 for the modified area function where we have imposed 0.5 cm for the
maximum length of individual uniform pipes.

23



6 6
= )
= 3 = 3
0 ]
I T T T T T I T T T T T
] 2 4 6 3 10 0 2 4 6 3 10
3 .
z Af2)P(a) = [~ Af2)P(a)
=z o0 = 0 T —
= — = —_—
3 AP(x) -2 AP(z)
I T T I T T
] h] 10 ] 3 10
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Ec=3.73e-08 Ep=-6.142-06 Ec=-7.47e-08 Ep=1.50e-08
Ef=-1.09e-01 Ef=-1.17e-03

Z=(0.00e+00 , 1.34H0T) Z=(-0.00+00 , -5.622-03)

Z=(0.00e+00 ,-1.74+07)  Z=(0.002+00 , 4.522-03)

FIGURE 6.1 — Difference between computation using the original spline area function and its trans-
formation into a concatenation of small tubes.

We can see in fig [6.2| the difference between the transfer function computed with the original or
the discretized area functions.
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FIGURE 6.2 — Comparisond between transfer functions using left (blue) and right (red) area functions

in fig [6.1]

We did not realize the experiment on this geometry but, given the result obtained in sec [5.1] we
think that the splitted area function should provide a better experimental matching.

7 Conclusions

The variational formulation of the webster equation allowed us to model the sound field in an
acoustic graph composed of inteconnected acoustic ducts with variable cross section.

In section [3.3] we showed that resonance modes could obtained directly from eigenvectors of
linear operators and that resonance frequencies was obtained from the corresponding eigenvalues.

In section [3.4] we showed that solutions of the Webster equation could be obtained for each value
of the frequency by solving a linear system.

In section [4.5] we first identified at type of subgraphs responsible for zeros whose frequencies
could also be obtained from eigen values of linear operators build with the subgraph associated area
functions. In section .7, we showed that when cycles occur in the graph, the transfer function also
contains zeros that cannot be obtained from eigen values of linear operators. Nevertheless, using the
poles and zeros identified previously, we developed an algorithm for computing them at moderate
numerical cost. Such zeros were observed experimentally as described in section [5.3]

In section [3.6] we showed that solutions of the Webster equation could be obtained with arbirary
precision for each duct associated with graph eges but we observed in section [3.7] that errors on flow
flow conservation remain significant once some of the ducts connected to a junction present strong
area function variations.

Moreover, we have seen in section [5.I]that the Webster equation is not appropriated for modelling
a sharp constriction, but that the variational formulation could still be used by modelling it with a
concatenation of uniform pipes.

In section[6] we eventually propose a numerical scheme that allow us to model any type of acoustic
graph. This sould be valid in the low frequency range where the wavelenghts are large compared to
the dimension of the junction area that is not propperly modeled by our 1D formulation.
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In the experimental section [5] we verified, that our calculations are in agreement with experi-

mental results for a pipe with sharp constriction, a resonator conected to a pipe and an acoustic
graph in which cycle zeros occur.
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